LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y = ( √ π)sin 2x trên R bằng? A 1 B √ π C π D 0 Câu 2[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Giá trị lớn nhất của hàm số y= (√π)sin 2x
trên R bằng?
Câu 2 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox
A V = 32
3 .
Câu 3 Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình vuông.
Tính thể tích của khối trụ
Câu 4 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Câu 5 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?
A ln(ab2)= ln a + 2 ln b B ln(ab2)= ln a + (ln b)2
b)= ln a
ln b.
Câu 6 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 1 B y= x4+ 1 C y= x4+ 2x2+ 1 D y= −x4+ 2x2+ 1
Câu 7 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và không có tiệm cận đứng.
B Không có tiệm cận ngang và có một tiệm cận đứng.
C Không có tiệm cận.
D Có một tiệm cận ngang và một tiệm cận đứng .
Câu 8 Cho hình hộp chữ nhật ABCD.A′
B′C′D′ có AB = a, AD = a√3 Tính khoảng cách giữa hai đường thẳng BB′và AC′
A. a
√
3
a√2
√
√ 3
4 .
Câu 9 Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y= x2 và đường thẳng y= mx với m , 0 Hỏi có bao nhiêu số nguyên dương m để diện tích hình phẳng (H) là số nhỏ hơn 20
Câu 10 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn
z+ 4 − 8i
= 2√5
là đường tròn có phương trình:
A (x+ 4)2+ (y − 8)2 = 2√5 B (x − 4)2+ (y + 8)2= 2√5
C (x+ 4)2+ (y − 8)2 = 20 D (x − 4)2+ (y + 8)2= 20
Câu 11 Thể tích khối lập phương có cạnh 3a là:
Câu 12 Tính đạo hàm của hàm số y= 2023x
A y′= 2023x
ln 2023 C y′ = x.2023x−1 D y′ = 2023x
ln x
Câu 13 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?
A.
√
3
1
√ 15
√ 3
2 .
Trang 2Câu 14 Biết rằng phương trình log22x −7log2x+ 9 = 0 có 2 nghiệm x1, x2 Giá trị của x1x2bằng
Câu 15 Cho hàm số có bảng biến thiên:
Khẳng định nào sau đây là đúng?
A Hàm số đạt cực đại tại B Hàm số đạt cực đại tại
C Hàm số đạt cực đại tại D Hàm số đạt cực đại tại
Câu 16 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= x3− 3x2+ 2 B y= x4− 2x2+ 2 C y= −x4+ 2x2+ 2 D y= −x3+ 3x2+ 2
Câu 17 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng
A.
√
3
√ 3
√ 2
2 a
Câu 18 Phần ảo của số phức z= 2 − 3i là
Câu 19 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R02 f(2x)dx bằng
Câu 20 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4 = (1; 1; −1) B.→−n1 = (−1; 1; 1) C.→−n2 = (1; −1; 1) D.→−n3 = (1; 1; 1)
Câu 21 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 22 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng
Câu 23 Tập nghiệm của bất phương trình 2x +1< 4 là
Câu 24 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn
log3x2+ y2+ x + log2
x2+ y2
≤ log3x+ log2
x2+ y2+ 24x
?
Câu 25 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′ = − 1
x ln 3 B y′ = 1
x ln 3 C y′ = ln 3
x D y′ = 1
x
Câu 26 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 27 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 28 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 29 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; −2; −3) B (−1; 2; 3) C (1; 2; −3) D (1; −2; 3).
Câu 30 NếuR2
0 f(x)= 4 thì R2
0 [1
2f(x) − 2] bằng
Trang 3Câu 31 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′(x) bằng
A. 1
5
1
4
3.
Câu 32 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 34 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1
z+ z + 2i là số thuần ảo?
A Một đường tròn B Một Elip C Một Parabol D Một đường thẳng Câu 35 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?
A. 1
2 < |z| < 3
3
2 ≤ |z| ≤ 2. C |z| <
1
2. D |z| > 2.
Câu 36 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b
Câu 37 Cho số phức z thỏa mãn |z − 4|+ |z + 4| = 10 Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt là
Câu 38 Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là hình tròn có diện tích bằng bao nhiêu
Câu 39 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là
Câu 40 Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
−2 − 3i
3 − 2i z+ 1
= 1
A max |z|= 1 B max |z|= √2 C max |z|= 3 D max |z|= 2
Câu 41 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A x − y+ 4 = 0 B x − y+ 8 = 0 C x+ y − 8 = 0 D x+ y − 5 = 0
Câu 42 Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − z
z −2i
= 2 ?
A Một Elip B Một đường tròn C Một Parabol D Một đường thẳng Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax > ay ⇔ x< y B Nếu a > 1 thì ax > ay ⇔ x> y
C Nếu a > 0 thì ax = ay
⇔ x= y D Nếu a < 1 thì ax > ay
⇔ x< y
Câu 44 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A −4 ≤ m ≤ −1 B m > −2 C −3 ≤ m ≤ 0 D m < 0.
Câu 45 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
64.
Trang 4Câu 46 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 47 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 3mn+ n + 4
C log22250= 2mn+ n + 3
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
C.R e2xdx=e2x
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên
đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M
A M(7
3;
10
3 ;
31
4
3;
10
3 ;
16
2
3;
7
3;
21
5
3;
11
3 ;
17
3 ).
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) và tiếp
xúc với mặt phẳng (P) : 2x+ y − 2z + 1 = 0
A (x − 1)2+ (y + 2)2+ (z − 4)2 = 1 B (x − 1)2+ (y − 2)2+ (z − 4)2= 2
C (x − 1)2+ (y − 2)2+ (z − 4)2 = 1 D (x − 1)2+ (y − 2)2+ (z − 4)2= 3
Trang 5HẾT