1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (649)

5 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Không có thông tin
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Không có thông tin
Định dạng
Số trang 5
Dung lượng 121,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O′; r) Một hình nón có đỉnh[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình trụ có hai đáy là hai đường tròn (O; r) và (O

; r) Một hình nón có đỉnh O và có đáy là hình tròn (O′; r) Mặt xung quanh của hình nón chia khối trụ thành hai phần Gọi V1 là thể tích của khối nón, V2là thể tích của phần còn lại Tính tỉ số V1

V2

A. V1

V2 = 1

V1

V2 = 1

V1

V2 = 1

6.

Câu 2 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A 3√3(m2) B. 3

√ 3

√ 3

2) D 1 (m2)

Câu 3 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. π√2.a3

4π√2.a3

2π.a3

π.a3

3 .

Câu 4 Tìm nghiệm của phương trình 2x = (√3)x

Câu 5 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A là hình chiếu của

M trên mặt phẳng (Oxy)

A A(0; 0; 3) B A(0; 2; 3) C A(1; 0; 3) D A(1; 2; 0).

Câu 6 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(−3; 1; 1) B C(1; 5; 3) C C(3; 7; 4) D C(5; 9; 5).

Câu 7 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b − log√

ba3

A. 4m

2− 3

m2− 3

m2− 12

m2− 12

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. D (S ) : (x − 2)

2+ (y − 1)2+ (z + 1)2= 3

Câu 9 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 10 Cho cấp số nhân (un) với u1 = −1

2; u7 = −32 Tìm q?

A q= ±1

Câu 11 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.→−b ⊥→−c B.→−b ⊥→−a C.

→ a

→ c

= √3

Trang 2

Câu 12 Tìm đạo hàm của hàm số: y= (x2+ 1)

3 2

A. 3

2(x

2+ 1)

1

2(2x)

1

4x

−1

1

2

Câu 13 Tập nghiệm của bất phương trình log3(10 − 3x +1) ≥ 1 − x chứa mấy số nguyên.

Câu 14 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?

A.→−n = (2; −3; 4) B.→−n = (2; 3; −4) C.→−n = (−2; 3; 4) D.→−n = (−2; 3; 1)

Câu 15 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:

A I(1; 2; −3); R = 3 B I(−1; 2; −3); R = 3 C I(1; −2; 3); R = 3 D I(1; 2; 3); R= 3

Câu 16 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(−2; −6; 4) B M(5; 5; 0) C M(−2; 6; −4) D M(2; −6; 4).

Câu 17 Có bao nhiêu số nguyên x thỏa mãn log3 x2−16

343 < log7 x2−16

27 ?

Câu 18 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x3− 3x − 5 B y= x4− 3x2+ 2 C y= x2− 4x+ 1 D y= x−3

x−1

Câu 19 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

Câu 20 Trong không gian Oxyz, cho đường thẳng d : x−12 = y−2

−1 = z +3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B M(2; −1; −2) C P(1; 2; 3) D N(2; 1; 2).

Câu 21 Xét các số phức z thỏa mãn z2− 3 − 4i = 2|z| Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của |z| Giá trị của M2+ m2bằng

Câu 22 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 23 Cho hàm số y= ax +b

cx +d có đồ thị là đường cong trong hình bên Tọa độ giao điểm của đồ thị hàm

số đã cho và trục hoành là

Câu 24 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

Câu 25 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =

x

3+ (a + 2)x + 9 − a2

đồng biến trên khoảng (0; 1)?

Câu 26 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được

đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

A. 18

4

1

9

35.

Câu 27 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

1

3.

Câu 28 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Trang 3

Câu 29 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 30 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A P(1; 2; 3) B Q(1; 2; −3) C M(2; −1; −2) D N(2; 1; 2).

Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= ln3

′ = − 1

′ = 1

′ = 1

x.

Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 33 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

Câu 34 (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M′ Số phức ω= (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N′ Biết rằng M, M′, N, N′

là bốn đỉnh của hình chữ nhật Tìm giá trị nhỏ nhất của ⇒ |z+ 4i − 5| ≥ √1

2

⇔ x= 9

2 ⇔ z= 9

2 −

9

2i|z+ 4i − 5|

A. 1

1

4

2

5.

Câu 35 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

2 .

Câu 36 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 37 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0 Tính giá trị của biểu thức a+ b

Câu 38 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= 1 + √27i hoặcw= 1 − √27i B w= 1 + √27 hoặcw= 1 − √27

C w= √27 − i hoặcw= √27+ i D w= −√27 − i hoặcw= −√27+ i

Câu 39 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một Elip B Một đường tròn C Một Parabol D Một đường thẳng Câu 40 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 2

√ 3

2 .

Câu 41 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Parabol B Đường tròn C Một đường thẳng D Hai đường thẳng.

Câu 42 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A. 3

1

1

2 < |z| < 3

2.

Trang 4

Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng

vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√

3 Tính thể tích khối chóp S ABC

A. a

3√

5

a3√ 15

a3√ 15

a3√ 15

16 .

Câu 44 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A ln 2+ 6π

1

4ln 2+ 3π

1

5ln 2+ 6π

5 .

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính M+ m

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

64.

Câu 48 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′

Tính giá trị cos α

A.

3

1

√ 3

√ 5

5 .

Câu 49 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 50 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:17

w