1. Trang chủ
  2. » Tất cả

Đề thi tham khảo môn toán (512)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 122,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y = 0; x = 2 Tính thể tích V củ[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 32π

5 .

Câu 2 Cho a > 0 và a , 1 Giá trị của alog√a 3bằng?

Câu 3 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

5

√ 15

a√5

3 .

Câu 4 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ

điểm C sao cho ABCD là hình thang có hai cạnh đáy AB, CD và có góc C bằng 450

A C(1; 5; 3) B C(−3; 1; 1) C C(5; 9; 5) D C(3; 7; 4).

Câu 5 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2 − 2x − 2y+ 4z − 1 = 0 và mặt phẳng (P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính lớn nhất

Câu 6 Cho hàm số y= x3+ 3x2− 9x − 2017 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; −3) B Hàm số đồng biến trên khoảng (−3; 1).

C Hàm số nghịch biến trên khoảng (−3; 1) D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 7 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A.

2.a2

π√2.a2

Câu 8 Tính nguyên hàmR cos 3xdx

A −1

Câu 9 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm

tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→

A M(2; −6; 4) B M(−2; −6; 4) C M(−2; 6; −4) D M(5; 5; 0).

Câu 10 Tập hợp các điểm trong mặt phẳng toạ độ biểu diễn các số phức z thoả mãn

z+ 4 − 8i

= 2√5

là đường tròn có phương trình:

A (x − 4)2+ (y + 8)2 = 2√5 B (x+ 4)2+ (y − 8)2= 20

C (x+ 4)2+ (y − 8)2 = 2√5 D (x − 4)2+ (y + 8)2= 20

Câu 11 Trong không gian Oxyz, cho ba véctơ→−a = (−1; 1; 0),→−b = (1; 1; 0), −→c = (1; 1; 1) Trong các mệnh đề sau, mệnh đề nào sai?

A.→−b ⊥→−c B.→−b ⊥→−a C.

→ c

→ a

= √2

Câu 12 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Trang 2

Câu 13 Với a là số thực dương tùy ý, log5(5a) bằng

A 5 − log5a B 1 − log5a C 5+ log5a D 1+ log5a

Câu 14 Cho hình chóp S ABCD có đáy là hình vuông ABCD cạnh a, cạnh bên S A vuông góc với mặt

phẳng đáy Biết S A= 3a, tính thể tích V của khối chóp S.ABCD

3.

Câu 15 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?

A V = 32

Câu 16 Cho hàm số f (x) Biết f (0)= 4 và f′

(x)= 2 sin2

x+ 1, ∀x ∈ R, khi đó

π 4 R

0

f(x) bằng

A. π2+ 16π − 4

Câu 17 Cho hàm số y= f (x) có đạo hàm f′

(x) = (x − 2)2(1 − x) với mọi x ∈ R Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Câu 18 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 19 Cho cấp số nhân (un)với u1= 2 và công bội q = 1

2 Giá trị của u3 bằng

Câu 20 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:

A.→−n1 = (−1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n3 = (1; 1; 1)

Câu 21 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′

(x) bằng

Câu 22 Có bao nhiêu số nguyên x thỏa mãn log3 x2343−16 < log7 x 2 −16

27 ?

Câu 23 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

A y= x2− 4x+ 1 B y= x−3

Câu 24 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số

đã cho là

Câu 25 Cho khối lập phương có cạnh bằng 2 Thể tích của khối lập phương đã cho bằng

Câu 26 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

2 + C

Câu 27 Tập nghiệm của bất phương trình 2x +1< 4 là

Câu 28 Tích tất cả các nghiệm của phương trình ln2x+ 2lnx − 3 = 0 bằng

A. 1

Trang 3

Câu 29 Có bao nhiêu số nguyên x thỏa mãn log3x

2− 16

343 < log7x2− 16

Câu 30 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F

(x)= 1

′ (x)= 2

(x)= −1

x2

Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:

A y′= 1

′ = 1

′ = ln3

′ = − 1 xln3.

Câu 32 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn

z+ 2i = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 33 Cho hàm số y= f (x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Câu 34 GọiM là điểm biểu diễn số phức z = 3 − 4i và M′ là điểm biểu diễn của số phức z′ = 1+ i

trong mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM′

A S = 25

4 .

Câu 35 Gọi z1và z2là các nghiệm của phương trình z2− 2z+ 10 = 0 Gọi M, N, P lần lượt là các điểm biểu diễn của z1, z2và số phức w= x + iy trên mặt phẳng phức Để tam giác MNP đều là số phức k là

A w= −√27 − i hoặcw= −√27+ i B w= 1 + √27 hoặcw= 1 − √27

Câu 36 Cho z1, z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1− z2| = 1 Tính giá trị biểu thức

P= |z1+ z2|

√ 3

√ 2

2 .

Câu 37 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Đường tròn B Hai đường thẳng C Parabol D Một đường thẳng Câu 38 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một đường thẳng B Một Parabol C Một đường tròn D Một Elip.

Câu 39 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x+ 1)2+ (y − 2)2 = 125 B (x − 1)2+ (y − 4)2= 125

C (x − 5)2+ (y − 4)2 = 125 D x= 2

Câu 40 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A. 1

2 < |z| < 3

3

2 ≤ |z| ≤ 2. C |z| <

1

2. D |z| > 2.

Câu 41 Cho số phức z thỏa mãn (z+ 1) (z − 2i) là số thuần ảo Tập hợp các điểm biểu diễn số phức z là một hình tròn có diện tích bằng

Câu 42 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một đường tròn B Một Parabol C Một đường thẳng D Một Elip.

Trang 4

Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 44 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

3.

Câu 45 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

5ln 2+ 6π

1

4ln 2+ 3π

5 .

Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox

A. 31π

33π

32π

5 .

Câu 47 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R

A −3 ≤ m ≤ 0 B −4 ≤ m ≤ −1 C m > −2 D m < 0.

Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc

tơ 2→−u + 3−→v

A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (1; 13; 16)

C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (2; 14; 14)

Câu 49 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

32.

Câu 50 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 2mn+ 2n + 3

C log22250= 3mn+ n + 4

Trang 5

HẾT

Ngày đăng: 05/04/2023, 19:04

🧩 Sản phẩm bạn có thể quan tâm

w