1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi tham khảo môn toán (598)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi tham khảo môn toán
Trường học Trường Đại Học Quốc Gia Hà Nội
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022 – 2023
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 120,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC A1B1C1 có AB = a, AC = 2a, AA1 = 2a √ 5 và B̂AC = 1200[.]

Trang 1

L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình lăng trụ đứng ABC.A1B1C1có AB= a, AC = 2a, AA1 = 2a√5 và dBAC = 1200 Gọi K,

I lần lượt là trung điểm của cạnh CC1, BB1 Tính khoảng cách từ điểm I đến mặt phẳng (A1BK)

A. a

15

√ 5

a√5

3 .

Câu 2 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?

2F(2x − 1)+ C

Câu 3 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình trụ có đáy là đường

tròn ngoại tiếp tam giác BCD và có chiều cao bằng chiều cao của tứ diện

A.

2.a2

π√3.a2

Câu 4 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 5 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A [22;+∞) B (7

4; 2]S[22;+∞) C (7

4;+∞)

D [7

4; 2]S[22;+∞)

Câu 6 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A −1

1

2

3.

Câu 7 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 8 Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vuông với

cạnh huyền bằng 2a Tính thể tích của khối nón

A. 2π.a

3

π.a3

π√2.a3

√ 2.a3

Câu 9 Tập nghiệm của bất phương trình log3(36 − x2) ≥ 3 là

A (−∞; 3] B [−3; 3] C (−∞; −3] ∪ [3; +∞) D (0; 3].

Câu 10 Cho số phức z= (1 + i)2(1+ 2i) Số phức z có phần ảo là

Câu 11 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần

lượt được các hình tròn xoay có thể tích là 672π, 3136π

9408π

13 .Tính diện tích tam giác ABC.

Câu 12 Trong các số phức z thỏa mãn

z − i

=

¯z − 2 − 3i

Hãy tìm z có môđun nhỏ nhất

A z= 27

5−

6

5 −

27

5+ 27

5 i.

Câu 13 Cần chọn 3 người đi công tác từ một tổ có 30 người, khi đó số cách chọn là

Trang 2

Câu 14 Hình chópS ABC có đáy là tam giác vuông tại B có AB= a, AC = 2a, S A vuông góc với mặt phẳng đáy, S A= 2a Gọi φ là góc tạo bởi hai mặt phẳng (S AC), (S BC) Tính cos φ =?

A.

3

√ 15

√ 3

1

2.

Câu 15 Đồ thị hàm số y= x+ 1

x −2 (C) có các đường tiệm cận là

A y= 1 và x = −1 B y= −1 và x = 2 C y= 2 và x = 1 D y= 1 và x = 2

Câu 16 Cho số phức z= a + bi (a, b ∈ R) thỏa mãn z + 1 + 3i −

z

i= 0 Tính S = 2a + 3b

Câu 17 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= −1

x 2 B F′(x)= 2

x

Câu 18 Cho hình chóp đều S ABCD có chiều cao a, AC= 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) bằng

A. 2

3

√ 2

√ 3

Câu 19 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; 2; −3) B (−1; 2; 3) C (−1; −2; −3) D (1; −2; 3).

Câu 20 Tích tất cả các nghiệm của phương trình ln2x+ 2 ln x − 3 = 0 bằng

A. 1

e 2

Câu 21 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z+ 2i| = 1 là một đường tròn Tâm của đường tròn đó có tọa độ là

Câu 22 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 23 Trong không gian 0xyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 4y − 6z+ 1 = 0 Tâm của (S ) có tọa độ là

A (−1; −2; −3) B (2; 4; 6) C (1; 2; 3) D (−2; −4; −6).

Câu 24 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 25 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và

S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng

Câu 26 Tập nghiệm của bất phương trình log(x − 2) > 0 là

Câu 27 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

11

Câu 28 Trên tập hợp số phức, xét phương trình z2− 2(m+ 1)z + m2 = 0 ( m là tham số thực) Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1, z2thỏa mãn

z1

+ z2

= 2?

Câu 29 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Có bao nhiêu giá trị nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?

Trang 3

Câu 30 Xét các số phức z thỏa mãn

z2− 3 − 4i

= 2

z Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của

z

Giá trị của M2+ m2bằng

Câu 31 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1

2 Giá trị của u3bằng

A. 7

1

1

2.

Câu 32 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6) Xét các điểm M thay đổi sao

cho tam giác OAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Câu 33 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 34 Cho các số phức z thoả mãn (1+ z)2là số thực Tập hợp điểm M biểu diễn số phức z là

A Một đường thẳng B Đường tròn C Parabol D Hai đường thẳng.

Câu 35 Tìm tập hợp các điểm M biểu diễn số phức z sao cho w= z+ i + 1

z+ z + 2i là số thuần ảo?

A Một Parabol B Một đường tròn C Một đường thẳng D Một Elip.

Câu 36 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng ?

A |z| < 1

3

1

2 < |z| < 3

2.

Câu 37 Tìm tập hợp các điểm M biểu diễn số phức z sao cho

z − z

z −2i

= 2 ?

A Một đường tròn B Một Elip C Một đường thẳng D Một Parabol.

Câu 38 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1 Tìm giá trị lớn nhất của biểu thức T = |z + 1| + 2|z − 1|

A max T = 3√5 B max T = 2√10 C max T = 2√5 D max T = 3√2

Câu 39 Gọi z1và z2 là các nghiệm của phương trình z2− 4z+ 9 = 0 Gọi M, N là các điểm biểu diễn của z1, z2trên mặt phẳng phức Khi đó độ dài của MN là

Câu 40 Cho số phức z thỏa mãn |i+ 2z| = |z − 3i| Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3

là một đường thẳng có phương trình là

Câu 41 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện

w= (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5

A (x − 1)2+ (y − 4)2 = 125 B (x+ 1)2+ (y − 2)2= 125

Câu 42 (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1+ i)z + 1 − 7i| = √2, tìm max |z|

A max |z|= 7 B max |z|= 3 C max |z|= 4 D max |z|= 6

Câu 43 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Trang 4

Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai

loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1

Câu 45 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 27

25

29

23

4 .

Câu 46 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

5ln 2+ 6π

1

4ln 2+ 3π

2 . C ln 2+ 6π

5 .

Câu 47 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 48 Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;

AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′

Tính giá trị cos α

A.

3

1

√ 5

√ 3

4 .

Câu 49 Tìm tập xác định D của hàm số y=

r log23x+ 1

x −1

A D = (−∞; 0)

B D = (−∞; −1] ∪ (1; +∞)

C D = (1; +∞)

Câu 50 Tính đạo hàm của hàm số y= log4√x2− 1

A y′ = x

(x2− 1) ln 4. B y

2(x2− 1) ln 4. C y

(x2− 1)log4e. D y

′ = √ 1

x2− 1 ln 4.

Trang 5

HẾT

Ngày đăng: 10/04/2023, 10:34

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm