1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (550)

5 0 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán (550)
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022-2023
Định dạng
Số trang 5
Dung lượng 122,54 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Cho hình lập phương ABCD.A

B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 2 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây là đúng?

A |→−u | = 1 B |→−u |= 9 C |→−u |= 3

D |→−u |= √3

Câu 3 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3+ 4x = (3 − y) p1 − y Kết luận nào sau đây là sai?

A Nếu 0 < x < π thì y > 1 − 4π2 B Nếux= 1 thì y = −3

C Nếu 0 < x < 1 thì y < −3 D Nếux > 2 thìy < −15.

Câu 4 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; 5; 0) B (0; 1; 0) C (0; −5; 0) D (0; 0; 5).

Câu 5 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 6 Công thức nào sai?

Câu 7 Cho hàm số y= ax+ b

cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?

A ad > 0 B ab < 0 C ac < 0 D bc > 0

Câu 8 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

Câu 9 Tính đạo hàm của hàm số y = 5x

A y′= 5x B y′ = 5x

′ = x.5x−1

Câu 10 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x + 2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 11 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng

Câu 12 Có bao nhiêu cặp số nguyên (x; y) thỏa mãn log4(9x2 + 16y2 + 112y) + log3(9x2 + 16y2) < log4y+ log3(684x2+ 1216y2+ 720y)?

Câu 13 Cho hàm số y = f (x) là hàm số bậc 3 và có đồ thị như hình vẽ Giá trị cực tiểu của hàm số đã cho bằng

Câu 14 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Trang 2

Câu 15 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

3

3

3.

Câu 16 Cho khối lăng trụ đứng ABC.A′B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′

BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

B′C′

A. a

3

a3

a3

√ 2

a3

√ 2

Câu 17 Cho các mệnh đề sau:

I Cho x, y là hai số phức thì số phức x+ y có số phức liên hợp là x + y

II Số phức z= a + bi (a, b ∈ R) thì z2+ (z)2 = 2(a2− b2)

III Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy

IV Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y

Câu 18 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 19 Với mọi số phức z, ta có |z+ 1|2bằng

Câu 20 Cho số phức z thỏa mãn (2+ i)z + 2(1+ 2i)

1+ i = 7 + 8i Mô-đun của số phức w = z + i + 1 là

Câu 21 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 23 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 24 Phần thực của số phức z= 4 − 2i

2 − i + (1 − i)(2+ i)

A. 29

11

11

29

13.

Câu 25 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 26 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 27 Cho hàm số y= ax+ b

cx+ d có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Câu 28 ChoR 1

x dx= F(x) + C Khẳng định nào dưới đây đúng?

A F′(x)= 2

′(x)= lnx D F′(x)= −1

x2

Trang 3

Câu 29 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) và N(5; 5; 1) Đường thẳng MN có phương

trình là:

A.

x= 5 + 2t

y= 5 + 3t

z= −1 + t

x= 1 + 2t

y= −1 + 3t

z= −1 + t

x= 5 + t

y= 5 + 2t

z= 1 + 3t

x= 1 + 2t

y= −1 + t

z= −1 + 3t

Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 31 Cho hàm số f (x) liên tục trên R Gọi F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn

F(4)+ G(4) = 4 và F(0) + G(0) = 1 Khi đó R2

0 f(2x) bằng

A. 3

3

2.

Câu 32 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

C.R f(x)= sinx + x2

Câu 33 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Câu 34 Cho số phức z thỏa mãn |z|= 1 Tìm giá trị nhỏ nhất của biểu thức T = |z + 1| + 2|z − 1|

Câu 35 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A. 5

2 < |z| < 4 B. 3

2 < |z| < 3 C 3 < |z| < 5 D. 1

2 < |z| < 2

Câu 36 Cho số phức z thỏa mãn |z| ≤ 1 ĐặtA= 2z − i

2+ iz Mệnh đề nào sau đây đúng?

Câu 37 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 38 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 39 Cho số phức z thỏa mãn

z+ 1 z

= 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 40 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 22 B P=

|z|2− 42 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Trang 4

Câu 43 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2

(x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3

R

2

|x2− 2x|dx

D.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx −

3

R

2

(x2− 2x)dx

Câu 44 Hình phẳng giới hạn bởi đồ thị hàm y= x2+1 và hai tiếp tuyến của nó tại hai điểm A(−1; 2); B(−2; 5)

có diện tích bằng:

A. 1

1

1

1

4.

Câu 45 Biết

π 2 R

0

sin 2xdx= ea Khi đó giá trị a là:

Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(5

3;

11

3 ;

17

7

3;

10

3 ;

31

4

3;

10

3 ;

16

2

3;

7

3;

21

3 ).

Câu 48 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 49 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau

Câu 50 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Trang 5

HẾT

Ngày đăng: 05/04/2023, 17:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm