1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (619)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2022-2023
Định dạng
Số trang 5
Dung lượng 125,65 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = cos2x sin x +C B ∫ sin2 x cos x = −[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Kết quả nào đúng?

A.R sin2xcos x= cos2x sin x + C B. R sin2xcos x= −sin3x

3 + C

C.R sin2xcos x= −cos2x sin x + C D.R sin2xcos x= sin3x

Câu 2 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được

A Đường elip B Đường hypebol C Đường parabol D Đường tròn.

Câu 3 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= 1

R

R

y= −1

2.

Câu 4 Tính diện tích S của hình phẳng được giới hạn bởi các đường y= x2, y = −x

A S = 1

6.

Câu 5 Cho số thực dươngm Tính I =

m R 0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 ). B I = ln(

m+ 1

m+ 2). C I = ln(

m+ 2 2m+ 2). D I = ln(

m+ 2

m+ 1).

Câu 6 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm

số y= 3x2+ log3x+ m là:

Câu 7 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:

A VS.ABC = a

2 q

b2− √3a2

√ 3ab2

12 .

C VS.ABC = a2

√ 3b2− a2

√ 3a2b

12 .

Câu 8 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng?

A y= −x4+ 3x2− 2 B y= x2− 2x+ 2

Câu 9 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên

Số giá trị nguyên của tham số m để phương f (x+ m) = m có ba nghiệm phân biệt?

Câu 10 Cho đa giac đêu 12 đinh Chon ngâu nhiên 3 đinh trong 12 đinh cua đa giac Xac suât đê 3đinh

đươc chon tao thanh tam giac đêu la

A P= 1

14.

Câu 11 Cho hàm số f (x)=

− 1

3x

3+ 1

2(2m+ 3)x2− (m2+ 3m)x + 2

3

Có bao nhiêu giá trị nguyên của tham số m thuộc [−9; 9] để hàm số nghịch biến trên khoảng (1; 2)?

Câu 12 Cho hàm số f (x) liên tục trên R và

2 R 0

( f (x)+ 2x) = 5 TínhR2

0

f(x)

Trang 2

Câu 13 Họ tất cả các nguyên hàm của hàm số f (x)= 5x4+ cos x là

A 5x5− sin x+ C B 5x5+ sin x + C C x5− sin x+ C D x5+ sin x + C

Câu 14 Cho hàm số y= f (x) có đồ thị của y = f′

(3 − 2x) như hình vẽ sau:

Có bao nhiêu giá trị nguyên của tham số m ∈ [−2021; 2021] để hàm số g(x) = f (

x3+ 2021x

+ m)

có ít nhất 5 điểm cực trị?

Câu 15 Cho số phức zthỏa mãn

z

i+ 2

= 1 Biết rằng tập hợp các điểm biểu diễn số phức zlà một đường tròn (C) Tính bán kính rcủa đường tròn (C)

Câu 16 Tổng tất cả các nghiệm của phương trình log2(6 − 2x)= 1 − x bằng

Câu 17 Mô-đun của số phức z= (1+ i)(2 − i)

Câu 18 Cho số phức z thỏa 25

1+ i +

1 (2 − i)2 Khi đó phần ảo của z bằng bao nhiêu?

Câu 19 Tính mô-đun của số phức z thỏa mãn z(2 − i)+ 13i = 1

A |z|= √34 B |z|= 5

√ 34

√ 34

3 .

Câu 20 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= 21009 B (1+ i)2018 = 21009i C (1+ i)2018 = −21009 D (1+ i)2018 = −21009i

Câu 21 Cho A= 1 + i2+ i4+ · · · + i4k−2+ i4k, k ∈ N∗ Hỏi đâu là phương án đúng?

Câu 22 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 23 Với mọi số phức z, ta có |z+ 1|2bằng

A |z|2+ 2|z| + 1 B z+ z + 1 C z · z+ z + z + 1 D z2+ 2z + 1

Câu 24 Cho số phức z thỏa mãn z= 4(−3+ i)

1 − 2i + (3 − i)2

−i Mô-đun của số phức w= z − iz + 1 là

A |w|= √48 B |w|= 4√5 C |w|= 6√3 D |w|= √85

Câu 25 Cho số phức z thỏa mãn z = (1+ i)(2 + i)

1 − i + (1 − i)(2 − i)

1+ i Trong tất cả các kết luận sau, kết luận nào đúng?

z. D z là số thuần ảo.

Câu 26 Tập xác định của hàm số y= logπ(3x− 3) là:

Câu 27 Tìm tập hợp tất cả các giá trị của tham số m để hàm số y= x3+ (m − 2)x2− 3mx+ m có điểm cực đại có hoành độ nhỏ hơn 1

Câu 28 Tính tổng tất cả các nghiệm của phương trình 6.22x− 13.6x+ 6.32x = 0

6 .

Trang 3

Câu 29 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3

3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R

Câu 30 Tập nghiệm của bất phương trình log4(3x

− 1).log 1

4

3x− 1

3

4 là:

Câu 31 Đồ thị như hình bên là đồ thị của hàm số nào?

A y= −2x+ 3

2x+ 1

x+ 1 .

Câu 32 Rút gọn biểu thức M= 1

logax + 1

loga2x+ + 1

logakx ta được:

A M= 4k(k+ 1)

logax . B M= k(k+ 1)

3logax . C M = k(k+ 1)

logax . D M = k(k+ 1)

2logax .

Câu 33 Cho hàm số y= 5x 2 −3x Tính y′

A y′= (x2− 3x)5x2−3xln 5 B y′ = (2x − 3)5x2−3x

Câu 34 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 35 Xét số phức z thỏa mãn 2|z − 1|+ 3|z − i| ≤ 2√2 Mệnh đề nào dưới đây đúng?

A |z| > 2 B. 1

2 < |z| < 3

2. C |z| <

1

3

2 ≤ |z| ≤ 2.

Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| =

√ 2

2 và điểm A trong hình vẽ bên là điểm biểu diễn z

Biết rằng điểm biểu diễn số phức ω = 1

iz là một trong bốn điểm M, N, P, Q Khi đó điểm biểu diễn

số phức ω là

Câu 38 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

2.

Câu 39 Cho z1, z2, z3 thỏa mãn z1+ z2+ z3 = 0 và |z1|= |z2|= |z3|=

√ 2

2 Giá trị lớn nhất của biểu thức

P= |z1+ z2|+ 2|z2+ z3|+ 3|z3+ z1|bằng bao nhiêu?

A Pmax= 10

√ 2

√ 5

√ 6

√ 2

3 .

Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn là M như hình bên.

Biết rằng điểm biểu diễn số phức ω = 1

z là một trong bốn điểm P, Q, R, S Hỏi điểm biểu diễn số phức ω là điểm nào?

Trang 4

Câu 41 Cho số phức z thỏa mãn

z+ 1 z = 3 Tổng giá trị lớn nhất và nhỏ nhất của |z| là

Câu 42 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min = 3

2. B |w|min = 1

2. C |w|min = 2 D |w|min= 1

Câu 43 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:

Câu 44 Cho bất phương trình 3

√ 2(x−1)+1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình đúng với mọi x ∈ (4;+∞)

B Bất phương trình vô nghiệm.

C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

D Bất phương trình đúng với mọi x ∈ [ 1; 3].

Câu 45 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)

Câu 46 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x

2

8)= 8

A. 1

1

1

1

128.

Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:

A.

3

R

1

|x2− 2x|dx =R2

1 (x2− 2x)dx −

3 R 2 (x2− 2x)dx

B.

3

R

1

|x2− 2x|dx =R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

C.

3

R

1

|x2− 2x|dx =R2

1

|x2− 2x|dx −

3 R 2

|x2− 2x|dx

D.

3

R

1

|x2− 2x|dx = −R2

1

(x2− 2x)dx+R3

2 (x2− 2x)dx

Câu 49 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 50 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

15

πa2√ 17

πa2√ 17

πa2√ 17

Trang 5

HẾT

Ngày đăng: 05/04/2023, 13:43