Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích củ[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 6 trang)
Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp là:
A VS.ABC =
√ 3a2b
√ 3ab2
12 .
C VS.ABC = a2
√ 3b2− a2
2 q
b2− √3a2
Câu 2 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (0; −2; 0) B (0; 6; 0) C (0; 2; 0) D (−2; 0; 0).
Câu 3 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đồ thị hàm số y =
x3+ 6x2+ mx − 2 đi qua điểm (11;1)?
Câu 4 Cho số thực dươngm Tính I =
m R 0
dx
x2+ 3x + 2 theo m?
A I = ln(m+ 2
m+ 1). B I = ln(
m+ 2 2m+ 2). C I = ln(
m+ 1
m+ 2). D I = ln(
2m+ 2
m+ 2 ).
Câu 5 Bất đẳng thức nào sau đây là đúng?
A (√3+ 1)π > (√3+ 1)e B (√3 − 1)e < (√3 − 1)π
Câu 6 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên đoạn [−1; 2] nhỏ hơn 2
A −1 < m < 7
Câu 7 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5 = 0 Bán kính R của (S) bằng bao nhiêu?
Câu 8 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?
Câu 9 Tìm nghiệm của phương trình 2x = (√3)x
Câu 10 Cho hàm số y =
x
3
− mx+ 5 Hỏi hàm số đã cho có thể có nhiều nhất bao nhiêu điểm cực trị
Câu 11 Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3+ x2+ mx − 1nằm bên phải trục tung
A Không tồn tại m B m < 0 C m < 1
3. D 0 < m <
1
3.
Câu 12 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R
Trang 2Câu 13 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga2b −
log√
ba3
A. 4m
2− 3
m2− 3
m2− 12
m2− 12
Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : x2+ y2+ z2− 2x − 2y+ 4z − 1 = 0 và mặt phẳng
(P) : x+ y − 3z + m − 1 = 0 Tìm tất cả m để (P)cắt (S ) theo giao tuyến là một đường tròn có bán kính
lớn nhất
Câu 15 Tìm giá trị cực đại yCD của hàm số y= x3− 12x+ 20
Câu 16 Gọi S (t) là diện tích hình phẳng giới hạn bởi các đường y = 1
(x+ 1)(x + 2)2; y = 0; x = 0; x = t(t > 0) Tìm lim
t→ +∞S(t).
A ln 2 − 1
1
2. C ln 2+ 1
1
2− ln 2.
Câu 17 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3
Tìm F(π
4).
A F(π
4)= π
3 + ln 2
2 . B F(
π
4)= π
4 −
ln 2
2 . C F(
π
4)= π
3 −
ln 2
2 . D F(
π
4)= π
4 + ln 2
2 .
Câu 18 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A. √5
a< √5
√
3 < b−√3 D a
√
2 > b√2
Câu 19 Trong không gian với hệ tọa độ Oxyz cho→−u(2; −2; 1), kết luận nào sau đây đúng?
A |→−u |= 3 B |→−u |= 9 C |→−u |= √3 D |→−u | = 1
Câu 20 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằng
Câu 21 Hàm số nào sau đây đồng biến trên R?
A y= √x2+ x + 1 − √x2− x+ 1 B y= x2
Câu 22 Tìm tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số y= −x2+ 2mx − 1 − 2m trên
đoạn [−1; 2] nhỏ hơn 2
A m ∈ (0; 2) B −1 < m < 7
Câu 23 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Tọa độ của một
véc tơ pháp tuyến của (P) là
A (−2; 1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; −1; 2).
Câu 24 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A ln x > ln y B log 1
a
x> log1
a
y C log x > log y D logax> logay
Câu 25 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu
(S )có tâm I(3; 4; 6) và bán kính R= 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S)
theo dây cung dài nhất
Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; 1).
Độ dài đường cao AH của tứ diện ABCD là:
Trang 3Câu 27 Đồ thị như hình bên là đồ thị của hàm số nào?
A y= 2x+ 1
−2x+ 3
x+ 1 .
Câu 28 Cho hình chóp đều S ABCD có cạnh đáy bằng a Gọi M, N lần lượt là trung điểm của SA và BC
Biết góc giữa MN và mặt phẳng (ABCD) bằng 60o Tính sin của góc giữa MN và mặt phẳng (S BD)
A. 2
√ 10
√ 3
√ 5
5 .
Câu 29 Họ nguyên hàm của hàm số y= (x − 1)ex là:
A xex−1+ C B (x − 1)ex+ C C (x − 2)ex+ C D xex+ C
Câu 30 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục
bé bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 4a
2b
3
√
2π
2b 3
√ 2π
2b
4a2b
3√3π .
Câu 31 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:
Câu 32 Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y= x2+ 2x
x −1 là:
Câu 33 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường
y= 1
x, x= 1, x = 2 và trục hoành
A V = π
5 .
Câu 34 Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N) Diện tích
toàn phầnSt pcủa hình nón (N) bằng
A St p = 2πRl + 2πR2 B St p = πRl + 2πR2 C St p = πRh + πR2 D St p = πRl + πR2
Câu 35 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1
x+ 1 đạt cực tiểu tại điểm x= 0.
Câu 36 Tính đạo hàm của hàm số y= log4√x2− 1
A y′= x
(x2− 1) ln 4. B y
′ = √ 1
x2− 1 ln 4. C y
(x2− 1)log4e. D y
2(x2− 1) ln 4.
Câu 37 Biết a, b ∈ Z sao choR (x+ 1)e2xdx= (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 38 Cho hàm số y = x2− x+ m có đồ thị là (C) Tìm tất cả các giá trị của tham số m để tiếp tuyến của đồ thị (C) tại giao điểm của (C) với trục Oy đi qua điểm B(1; 2)
Câu 39 Chọn mệnh đề đúng trong các mệnh đề sau:
2 + C
Trang 4Câu 40 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
32.
Câu 41 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= −x4+ 2x2 B y= −2x4+ 4x2 C y= x3− 3x2
D y= −x4+ 2x2+ 8
Câu 42 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A m > −2 B −3 ≤ m ≤ 0 C −4 ≤ m ≤ −1 D m < 0.
Câu 43 Biết
π 2 R
0 sin 2xdx= ea Khi đó giá trị a là:
Câu 44 Hàm số nào trong các hàm số sau đồng biến trên R.
A y= 4x+ 1
Câu 45 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một
hình vuông Diện tích toàn phần của (T ) là
Câu 46 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng
(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C
A. 3a
√
30
3a√6
3a√6
a√15
Câu 47 Hàm số y= x3− 3x2+ 1 có giá trị cực đại là:
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
C.R e2xdx=e2x
Câu 49 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
5
√ 15
1
√ 15
5 .
Câu 50 Cho hình lăng trụ đứng ABCD.A′
B′C′D′ có đáy ABCD là hình chữ nhật,AB = a; AD = 2a;
AA′= 2a Gọi α là số đo góc giữa hai đường thẳng AC và DB′ Tính giá trị cos α
A. 1
√ 3
√ 5
√ 3
2 .
Trang 5HẾT