1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (545)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt quốc gia môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 122,27 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 6 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A 4 3[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 6 trang)

Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

A. 4

Câu 2 Giá trị nhỏ nhất của hàm số y= x

x2+ 1 trên tập xác định của nó là

A min

R

y= 1

R

R

y= −1

2.

Câu 3 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y+ 2z + 5 = 0 Giao điểm của (P)

và trục tung có tọa độ là

A (0; −5; 0) B (0; 1; 0) C (0; 5; 0) D (0; 0; 5).

Câu 4 Phương trình tiếp tuyến với đồ thị hàm số y= log5xtại điểm có hoành độ x= 5 là:

A y= x

5 ln 5−

1

5 ln 5 + 1

C y= x

5 ln 5+ 1 − 1

5 ln 5 − 1+ 1

ln 5.

Câu 5 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3

2, ((ℵ) có đỉnh thuộc (S ) và đáy

là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất

√ 3π

3.

Câu 6 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?

A log x > log y B ln x > ln y C logax> logay D log 1

a

x> log1

a y

Câu 7 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t)= 2t + 10(m/s) Tính quãng đường S mà chất điểm đó đi được sau 2 giây kể từ lúc bắt đầu chuyển động?

Câu 8 Cho số thực dươngm Tính I =

m

R

0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 ). B I = ln(

m+ 2 2m+ 2). C I = ln(

m+ 1

m+ 2

m+ 1).

Câu 9 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã cho

có diện tích lớn nhất bằng?

A. 3

3

√ 3

2)

Câu 10 Cho hình lập phương ABCD.A′B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

4.

Câu 11 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?

Câu 12 Cho a, b là hai số thực dương bất kì Mệnh đề nào dưới đây đúng?

b)= ln a

ln b.

C ln(ab2)= ln a + 2 ln b D ln(ab2)= ln a + (ln b)2

Trang 2

Câu 13 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt

A (7

4; 2]S[22;+∞) B [7

4;+∞)

Câu 14 Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp D.ABC′D′

A. a

3

a3

a3

a3

6.

Câu 15 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y= x3+x2và y= x2+3x+mcắt nhau tại nhiều điểm nhất

A −2 < m < 2 B −2 ≤ m ≤ 2 C 0 < m < 2 D m= 2

Câu 16 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A. 1

2

1

6.

Câu 17 Cho số thực dươngm Tính I =

m

R

0

dx

x2+ 3x + 2 theo m?

A I = ln(2m+ 2

m+ 2 2m+ 2). C I = ln(

m+ 1

m+ 2

m+ 1).

Câu 18 Số nghiệm của phương trình 9x+ 5.3x

− 6= 0 là

Câu 19 Bất đẳng thức nào sau đây là đúng?

A (√3+ 1)π > (√3+ 1)e B 3−e> 2−e

Câu 20 Tìm tất cả các giá trị của tham số m để đường thẳng y= x + m cắt đồ thị hàm số y = 3+ 2x

x+ 1 tại hai điểm phân biệt thuộc hai nửa mặt phẳng khác nhau bờ là trục hoành?

A m < 3

2. B 1 < m , 4 C ∀m ∈ R D −4 < m < 1.

Câu 21 Tìm tất cả các giá trị của tham số m để hàm số y= (1 − m)x4+ 3x2chỉ có cực tiểu mà không có cực đại

Câu 22 Cho lăng trụ đều ABC.A′B′C′có đáy bằng a, AA′= 4√3a Thể tích khối lăng trụ đã cho là:

Câu 23 Cho hình lập phương ABCD.A′B′C′D′ Tính góc giữa hai đường thẳng AC và BC′

Câu 24 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là

4πR3

Câu 25 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là

một điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM,

AN để tứ giác ABCD là hình thoi Tọa độ điểm C là:

A C(6; 21; 21) B C(8;21

Câu 26 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình

hành

A (−1; 1; 1) B (1; 1; 3) C (1; −2; −3) D (1; −1; 1).

Trang 3

Câu 27 Cường độ một trận động đất M (richter) được cho bởi công thức M = log A − log A0, với A là biên độ rung chấn tối đa và A0là một biên độ chuẩn (hằng số) Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần Cường độ của trận động đất ở Nam Mỹ có kết quả gần đúng bằng:

Câu 28 Tập nghiệm của bất phương trình log4(3x

− 1).log 1

4

3x− 1

3

4 là:

Câu 29 Đồ thị như hình bên là đồ thị của hàm số nào?

A y= 2x − 1

2x+ 1

−2x+ 3

1 − x .

Câu 30 Với giá trị nào của tham số m thì hàm số y = 2x − 3

x+ m2 đạt giá trị lớn nhất trên đoạn [1; 3] bằng 1

4 :

Câu 31 Lăng trụ ABC.A

B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên (ABC)

là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′A′) là

A. 3a

10

a√3

3a√13

3a√13

26 .

Câu 32 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là

A. 2

3x

3+ x4

3x

3+ x4

4 − 4x+ 4

Câu 33 Cho a > 1, a , 0 Tìm mệnh đề đúng trong các mệnh đề sau:

A loga1= a và logaa= 0 B logaxn= log

a

1 n

x, (x > 0, n , 0)

C logaxcó nghĩa với ∀x ∈ R D loga(xy)= logax.logay

Câu 34 Đồ thị hàm số y= 2x −

x2+ 3

x2− 1 có số đường tiệm cận đứng là:

Câu 35 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 36 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x

x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7

3) làm trọng tâm.

Câu 37 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt

phẳng (ABCD), S A = 2a Tính thể tích khối chóp S.ABCD

Câu 38 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox

A m > 2 hoặc m < −1 B m > 1 hoặc m < −1

Câu 39 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng

x= −1; x = 2

A. 29

27

23

25

4 .

Trang 4

Câu 40 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 3)

và có một véc tơ pháp tuyến là→−n(2; 1; −4)

A 2x+ y − 4z + 5 = 0 B 2x+ y − 4z + 7 = 0

C −2x − y+ 4z − 8 = 0 D 2x+ y − 4z + 1 = 0

Câu 41 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng

(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α

A.

5

√ 15

√ 15

1

2.

Câu 42 Một hình trụ (T ) có diện tích xung quanh bằng 4π và thiết diện qua trục của hình trụ này là một

hình vuông Diện tích toàn phần của (T ) là

Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M là điểm nằm trên

đoạn AB sao cho MA= 2MB Tìm tọa độ điểm M

A M(5

3;

11

3 ;

17

7

3;

10

3 ;

31

2

3;

7

3;

21

4

3;

10

3 ;

16

3 ).

Câu 44 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b

2x+ C Khi đó giá trị a + b là:

Câu 45 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 46 Cho P= 2a

4b8c, chọn mệnh đề đúng trong các mệnh đề sau

Câu 47 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.

A y= x3− 3x2

B y= −x4+ 2x2+ 8 C y= −2x4+ 4x2 D y= −x4+ 2x2

Câu 48 Cho hình chóp đều S.ABCD có cạnh đáy bằng a và chiều cao bằng 2a, diện tích xung quanh

của hình nón đỉnh S và đáy là hình tròn nội tiếp tứ giác ABCD bằng

A. πa2√

15

πa2√ 17

πa2√ 17

πa2√ 17

Câu 49 Chọn mệnh đề đúng trong các mệnh đề sau:

2 + C

C.R (2x+ 1)2

dx= (2x+ 1)3

Câu 50 Biết hàm F(x) là một nguyên hàm của hàm f (x)= cos x

sin x+ 2 cos x và F(−

π

2)= π Khi đó giá trị F(0) bằng:

A. 1

5ln 2+ 6π

1

4ln 2+ 3π

2 . D ln 2+ 6π

5 .

Trang 5

HẾT

Ngày đăng: 04/04/2023, 11:17

🧩 Sản phẩm bạn có thể quan tâm

w