Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên tập xác định của nó là A m[.]
Trang 1Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y= x
x2+ 1 trên tập xác định của nó là
A min
R
y= −1
2. B minR
R
y= 1
y= 0
Câu 2 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3
2, ((ℵ) có đỉnh thuộc (S ) và đáy
là đường tròn nằm hoàn toàn trên (S )), hãy tìm diện tích xung quanh của (ℵ) khi thể tích của (ℵ)lớn nhất
A. 4
√
3π
√
3.
Câu 3 Cho hai số thực a, bthỏa mãn a > b > 0 Kết luận nào sau đây là sai?
A ea> eb B a−√3 < b−√3 C. √5
a< √5
√
2> b√2
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C là một
điểm trên mặt phẳng (P):x+ z − 27 = 0 sao cho tồn tại các điểm B, D tương ứng thuộc các tia AM, AN
để tứ giác ABCD là hình thoi Tọa độ điểm C là:
A C(6; −17; 21) B C(6; 21; 21) C C(8;21
2 ; 19). D C(20; 15; 7).
Câu 5 Tập tất cả các giá trị của tham số m để đồ thị hàm số y = log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 6 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng?
A log x > log y B log 1
a
x> log1
a
y C ln x > ln y D logax> logay
Câu 7 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4)
A F(π
4)= π
3 + ln 2
2 . B F(
π
4)= π
3 −
ln 2
2 . C F(
π
4)= π
4 + ln 2
2 . D F(
π
4)= π
4 −
ln 2
2 .
Câu 8 Cho hình hộp ABCD.A′
B′C′D′ có đáy ABCD là hình bình hành Hình chiếu vuông góc của A′ lên mặt phẳng (ABCD)trùng với giao điểm của AC vàBD Biết SABCD = 60a2, AB = 10a, góc giữa mặt bên (ABB′A′) và mặt đáy bằng 450 Tính thể tích khối tứ diện ACB′D′theo a
Câu 9 Cho hình chóp đều S ABCD có cạnh đáy bằng a và thể tích bằng a
3
6 Tìm góc giữa mặt bên và mặt đáy của hình chóp đã cho
Câu 10 Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét Khi đó hình thang đã
cho có diện tích lớn nhất bằng?
A. 3
√
3
2) B 3√3(m2) C. 3
√ 3
2) D 1 (m2)
Câu 11 Đường cong trong hình bên là đồ thị của hàm số nào?
A y= −x4+ 1 B y= x4+ 2x2+ 1 C y= −x4+ 2x2+ 1 D y = x4+ 1
Câu 12 Giá trị nhỏ nhất của hàm số y= 2x + cos xtrên đoạn [0; 1] bằng?
Trang 2Câu 13 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x.
A. 2
1
1
6.
Câu 14 Tập nghiệm của bất phương trình log 1
2 (x − 1) ≥ 0 là:
Câu 15 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)
A (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 1
3. B (S ) : (x − 2)
2+ (y − 1)2+ (z + 1)2 = 3
C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1
3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2 = 3
Câu 16 Cho hàm số y = f (x) xác định và liên tục trên mỗi nửa khoảng (−∞; −2] và [2; +∞), có bảng biến thiên như hình bên Tìm tập hợp các giá trị của m để phương trình f (x) = m có hai nghiệm phân biệt
A (7
4;+∞)
B (7
4; 2]S[22;+∞) C [7
4; 2]S[22;+∞) D [22;+∞)
Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2+ y2+ z2− 4z − 5= 0 Bán kính R của (S) bằng bao nhiêu?
Câu 18 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − 2 = 0, mặt cầu (S )có tâm I(3; 4; 6) và bán kính R= 5.Viết phương trình đường thẳng đi qua A, nằm trong (P) và cắt (S) theo dây cung dài nhất
Câu 19 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích của khối chóp
là:
A VS ABC =
√ 3a2b
√ 3b2− a2
C VS ABC =
√ 3ab2
2 q
b2− √3a2
Câu 20 Tập tất cả các giá trị của tham số m để đồ thị hàm số y= log3(x2+ x + 1) + 2x3 cắt đồ thị hàm
số y= 3x2+ log3x+ m là:
Câu 21 Biết F(x) là một nguyên hàm của hàm số f (x)= x
cos2x và F(
π
3)= √π
3 Tìm F(
π
4).
A F(π
4)= π
3 + ln 2
2 . B F(
π
4)= π
4 + ln 2
2 . C F(
π
4)= π
3 −
ln 2
2 . D F(
π
4)= π
4 −
ln 2
2 .
Câu 22 Hình nón có bán kính đáy R, đường sinh l thì diện tích xung quanh của nó bằng
A 2π√l2− R2 B πRl C π√l2− R2 D 2πRl.
Câu 23 Cho hàm số y= ax+ b
cx+ d có đồ thị như hình vẽ bên Kết luận nào sau đây là sai?
A ad > 0 B bc > 0 C ac < 0 D ab < 0
Câu 24 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc
trục tung sao cho tam giác MNEcân tại E
A (−2; 0; 0) B (0; 6; 0) C (0; −2; 0) D (0; 2; 0).
Câu 25 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M′đối xứng với M qua mặt phẳng Oxz?
A M′(−2; −3; −1) B M′(−2; 3; 1) C M′(2; 3; 1) D M′(2; −3; −1)
Trang 3Câu 26 Cho hình chóp tứ giác S ABCD có đáy là hình vuông cạnh bằng a√2, tam giác S AB vuông cân tại S và mặt phẳng (S AB) vuông góc với mặt phẳng đáy Khoảng cách từ A đến mặt phẳng (S CD) là
A. a
√
10
√
√ 2
a√6
3 .
Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân
giác trong góc A của tam giác ABC cắt mặt phẳng (P) : x+ y + z − 6 = 0 tại điểm nào trong các điểm sau đây:
A (1; −2; 7) B (−2; 2; 6) C (−2; 3; 5) D (4; −6; 8).
Câu 28 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình
hành
A (1; −2; −3) B (1; −1; 1) C (−1; 1; 1) D (1; 1; 3).
Câu 29 Cho tam giác ABC vuông tại A, AB= a, BC = 2a Tính thể tích khối nón nhận được khi quay tam giác ABC quanh trục AB
3
3
Câu 30 Nguyên hàm F(x) của hàm số f (x)= 2x2+ x3− 4 thỏa mãn điều kiện F(0)= 0 là
A x3− x4+ 2x B. 2
3x
3+ x4
2
3x
3+ x4
4 − 4x+ 4 D 2x3− 4x4
Câu 31 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình
A (x − 1)2+ (y + 1)2+ (z + 2)2= 6 B (x+ 1)2+ (y − 1)2+ (z − 2)2 = 24
C (x+ 1)2+ (y − 1)2+ (z − 2)2= 6 D (x+ 1)2+ (y − 1)2+ (z − 2)2 = √6
Câu 32 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3
3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R
Câu 33 Lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A′ lên (ABC)
là trung điểm của BC Góc giữa cạnh bên và mặt phẳng đáy là 600 Khoảng cách từ C′đến mp (ABB′A′) là
A. 3a
√
13
a
√ 3
3a√13
3a√10
20 .
Câu 34 Tìm tất cả các giá trị của tham số m để hàm số y= mx3+ mx2− x+ 2 nghịch biến trên R
A −3 ≤ m ≤ 0 B m < 0 C m > −2 D −4 ≤ m ≤ −1.
Câu 35 Tìm tất cả các giá trị của tham số m để hàm số y = x3− 3x+ m có giá trị lớn nhất và nhỏ nhất trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b= −36
Câu 36 Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 3a; cạnh S A vuông góc với mặt
phẳng (ABCD), S A = 2a Tính thể tích khối chóp S.ABCD
Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là→−u(2; 3; −5)
A.
x= −1 + 2t
y= 2 + 3t
z= −4 − 5t
x= 1 + 2t
y= −2 + 3t
z= 4 − 5t
x= 1 + 2t
y= −2 − 3t
z= 4 − 5t
x= 1 − 2t
y= −2 + 3t
z= 4 + 5t
Câu 38 Hàm số y= x4− 4x2+ 1 đồng biến trên khoảng nào trong các khoảng sau đây
Câu 39 Cho P= 2a4b8c, chọn mệnh đề đúng trong các mệnh đề sau
A P= 2a +2b+3c. B P= 2abc C P = 26abc D P = 2a +b+c.
Trang 4Câu 40 Cho biểu thức P= (ln a + logae)2+ ln2
a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng
D P= 2logae
Câu 41 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 42 Hàm số nào trong các hàm số sau có đồ thị như hình vẽ bên.
A y= x3− 3x2
B y= −2x4+ 4x2 C y= −x4+ 2x2 D y= −x4+ 2x2+ 8
Câu 43 Cho hình chóp S ABC có đáy ABC là tam giác vuông tại A; BC = 2a; ABCd = 600 Gọi Mlà trung điểm cạnh BC, S A= S C = S M = a√5 Tính khoảng cách từ S đến mặt phẳng (ABC)
Câu 44 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt phẳng (S AB), (S AC) cùng
vuông góc với mặt phẳng (ABC), diện tích tam giác S BC là a2√
3 Tính thể tích khối chóp S ABC
A. a
3√
15
a3
√ 5
a3
√ 15
a3
√ 15
16 .
Câu 45 Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
Câu 46 Tính thể tích của khối tròn xoay tạo thành khi cho hình phẳng giới hạn bởi đồ thị hàm y = x2, trục Ox và hai đường thẳng x= −1; x = 2 quay quanh trục Ox
A. 33π
31π
32π
5 .
Câu 47 Tính tích tất cả các nghiệm của phương trình (log2(4x))2+ log2(x
2
8)= 8
A. 1
1
1
1
64.
Câu 48 Chọn mệnh đề đúng trong các mệnh đề sau:
A.R (2x+ 1)2
dx= (2x+ 1)3
2 + C
Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua điểm
A(1; 2; 3) và có một véc tơ pháp tuyến là→−n(2; 1; −4)
A 2x+ y − 4z + 1 = 0 B −2x − y+ 4z − 8 = 0
C 2x+ y − 4z + 5 = 0 D 2x+ y − 4z + 7 = 0
Câu 50 Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a; cạnh S A vuông góc với mặt phẳng
(ABC), S A= 2a Gọi α là số đo góc giữa đường thẳng S B và mp(S AC) Tính giá trị sin α
A.
√
15
√ 5
√ 15
1
2.
Trang 5HẾT