TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 2. Khối đa diện đều loại {5; 3} có số cạnh
Câu 3. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A= a Khoảng cách giữa hai đường thẳng S B và AD bằng
√
√ 2
a
√ 2
2 .
Câu 4. Cho hàm số y= x3
− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số đồng biến trên khoảng (1; 2).
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 5. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey
− 1
Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
a3
√ 5
a3
√ 6
3√ 6
Câu 7. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 8. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 9. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 10. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
2.
Câu 11. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
A m = ±1 B m= ±√3 C m= ±√2 D m= ±3
Câu 12. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
a3√2
3√
3√ 3
6 .
Trang 2Câu 13. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.
Câu 14. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
1
0 = 1
xln 10. D y
0 = 1
x.
Câu 15. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A f (x) có giới hạn hữu hạn khi x → a B lim
x→a + f(x)= lim
x→a − f(x)= a
C lim
x→a + f(x)= lim
x→a − f(x)= +∞
Câu 16 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
B Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 17 Phát biểu nào sau đây là sai?
A lim qn= 1 với |q| > 1 B lim un= c (Với un = c là hằng số)
C lim √1
nk = 0 với k > 1
Câu 18. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
7
2.
Câu 19. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
Câu 20. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 21. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
B. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
Câu 22. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 23. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1 B xy0 = −ey+ 1 C xy0 = ey
− 1 D xy0 = ey+ 1
Câu 24. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
A − 5
9
23
13
100.
Câu 25. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Trang 3Câu 26. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 27. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a√3
Câu 28. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
a3√5
a3√5
a3√5
6 .
Câu 29 Hình nào trong các hình sau đây không là khối đa diện?
Câu 30. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 31. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 32. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 33. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
a√57
√
√ 57
19 .
Câu 34. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
A -2
7
Câu 35. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 36. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A 2a
√
√
√ 2
a
√ 2
4 .
Câu 37. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
3
a3
√ 3
a3
√ 3
6 .
Câu 38. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 39. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2 (e) là:
A. 1
8
8
1
3.
Trang 4Câu 40. Dãy số nào sau đây có giới hạn khác 0?
A. sin n
n+ 1
1
1
√
n.
Câu 41. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 42. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0 D m ≤ 0.
Câu 43. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√2 B m= ±√3 C m= ±1 D m= ±3
Câu 44. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 45. Khối đa diện đều loại {4; 3} có số mặt
Câu 46. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 2016 B T = 2016
2017. C T = 1008 D T = 2017
Câu 47. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 48. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 49. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 50. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 51. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3
√ 2
2 .
Câu 52. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Không có câu nào
sai
Câu 53. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Trang 5Câu 54. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 55. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 56. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 57. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 58. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C Cả ba câu trên đều sai.
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 59. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n2− 4n C un = n3− 3n
n+ 1 . D un = 6
5
!n
Câu 60. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3
a3√ 3
a3√ 3
a3√ 3
4 .
Câu 61. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Không thay đổi B Giảm đi n lần C Tăng lên (n − 1) lần D Tăng lên n lần.
Câu 62. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là
A. C
10
50.(3)40
20
50.(3)30
20
50.(3)20
40
50.(3)10
450
Câu 63. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
a2+ b2 B. √ 1
a2+ b2 C. √ ab
2√a2+ b2
Câu 64. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 65. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 66. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là
Trang 6Câu 67. Thể tích của khối lập phương có cạnh bằng a
√ 2
A V = a3√
3√ 2
√ 2
Câu 68. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4. B (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4.
C (x − 3)2+ (y − 1)2+ (z − 3)2= 9
2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 69. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 70. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0
là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
Câu 71. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 72. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = e + 2
e. C T = 4 + 2
e. D T = e + 3
Câu 73. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = a3
√ 3
2 . C V = 6a3 D V = 3a3√
3
Câu 74. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 75. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 76. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 77. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Trang 7Câu 78. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = −3 B m= 4 C m= −3, m = 4 D −3 ≤ m ≤ 4.
Câu 79. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 80. Khẳng định nào sau đây đúng?
A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 81. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 82. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 83. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 84. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 85. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 86. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 87. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A −1
1
Câu 88. [1] Tập xác định của hàm số y= 2x−1
là
A. D = R \ {1} B. D = R \ {0} C. D = (0; +∞) D. D = R
Câu 89. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 90. Tứ diện đều thuộc loại
Câu 91. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
Câu 92. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x
1 = y
1 = z −1
1 .
C. x
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
Câu 93. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Trang 8Câu 94. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 95. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 96. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 97. [2-c] Cho hàm số f (x) = 9x
9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)
Câu 98. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A.
√
√ 3
3 .
Câu 99. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 5 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.
Câu 100. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0
A A0(−3; −3; 3) B A0(−3; 3; 3) C A0(−3; 3; 1) D A0(−3; −3; −3)
Câu 101. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 102. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 103. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 104. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 105. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
B Hàm số nghịch biến trên khoảng (−2; 1).
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 106. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 107. Cho các dãy số (un) và (vn) và lim un = a, lim vn= +∞ thì limun
vn bằng
Trang 9Câu 108. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
3
2 e
π
√ 2
2 e
π
2e
π
Câu 109. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3
√ 3
a3
√ 6
24 .
Câu 110. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 111. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng 1
3; 1
! D Hàm số nghịch biến trên khoảng −∞;1
3
!
Câu 112. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
A.
√
√
Câu 113. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
A f0(0)= 1
ln 10. B f
0 (0)= ln 10 C f0(0)= 10 D f0(0)= 1
Câu 114. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 115. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
3.
Câu 116. Tìm giới hạn lim2n+ 1
n+ 1
Câu 117. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 2
9
1
1
5.
Câu 118. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
Câu 119. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 3, 5 triệu đồng C 20, 128 triệu đồng D 70, 128 triệu đồng.
Câu 120. Khối lập phương thuộc loại
Trang 10Câu 121. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là −
√
√
2 − 1, phần ảo là
√ 3
Câu 122. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ qlog23x+ 1+4m−
1= 0 có ít nhất một nghiệm thuộc đoạnh
1; 3
√
3i
Câu 123. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 124. Khối đa diện đều loại {5; 3} có số mặt
Câu 125. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 27 lần C Tăng gấp 9 lần D Tăng gấp 18 lần.
Câu 126. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 127. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 8 cạnh, 4 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 128. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)+ g(x)] = a + b B lim
x→ +∞[ f (x)g(x)]= ab
C lim
x→ +∞[ f (x) − g(x)]= a − b D lim
x→ +∞
f(x) g(x) = a
b.
Câu 129. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 130. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Chỉ có (II) đúng C Chỉ có (I) đúng D Cả hai câu trên đúng.
HẾT