Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Dãy số nào sau đây có giới hạn khác 0? A 1 √ n B 1 n C n + 1 n D sin n n Câu 2 [1] Đạo hàm của làm số y = l[.]
Trang 1Free LATEX
(Đề thi có 4 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Dãy số nào sau đây có giới hạn khác 0?
A. √1
1
n+ 1
sin n
n .
Câu 2. [1] Đạo hàm của làm số y = log x là
A. 1
0 = 1
0 = ln 10
0 = 1
xln 10.
Câu 3. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y= (x2− 3)extrên đoạn [0; 2] Giá trị của biểu thức P= (m2
− 4M)2019
Câu 4. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
A Có hai B Có một C Không có D Có một hoặc hai.
Câu 5. Tìm giá trị nhỏ nhất của hàm số y= (x2
− 2x+ 3)2
− 7
Câu 6. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1 0
f(x)dx
Câu 7. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
Câu 8. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3
a3√ 3
6 .
Câu 9. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A (−1; 0) B (0; 1) C (−∞; 0) và (1; +∞) D (−∞; −1) và (0; +∞) Câu 10. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 11. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
15
a3
√ 5
3√
3√ 6
3 .
Câu 12. [1] Giá trị của biểu thức 9log3 12bằng
Câu 13. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
2 . B V = πa3
√ 3
6 . C V = πa3
√ 3
3 . D V = πa3
√ 6
6 .
Trang 2Câu 14. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
A m > 1 B m > −1 C m > 0 D m ≥ 0.
Câu 15. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
7
Câu 16. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11 − 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11+ 19
Câu 17. Khối đa diện đều loại {5; 3} có số mặt
Câu 18. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
A 84cm3 B 91cm3 C 48cm3 D 64cm3
Câu 19. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b)
Câu 20. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
A 2
√
√
√ 3
Câu 21. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Câu 22. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
1
8
9.
Câu 23. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√ 6
√ 6
Câu 24. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt Câu 25. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3√5
a3√15
a3
3 .
Câu 26. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
− 2; m = e−2+ 2
C M = e−2+ 2; m = 1 D M = e−2− 2; m= 1
Câu 27. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
2a3√3
3√
3√ 3
3 .
Trang 3Câu 28. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
A. 1
Câu 29. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 30. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A 6 đỉnh, 12 cạnh, 8 mặt B 8 đỉnh, 10 cạnh, 6 mặt.
C 8 đỉnh, 12 cạnh, 8 mặt D 8 đỉnh, 12 cạnh, 6 mặt.
Câu 31. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Câu 32. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là 3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
C Phần thực là −3, phần ảo là −4 D Phần thực là −3, phần ảo là 4.
Câu 33. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
3.
Câu 34. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
A m > −5
5
4 < m < 0 C m ≥ 0 D m ≤ 0.
Câu 35. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A d song song với (P) B d nằm trên P.
C d nằm trên P hoặc d ⊥ P D d ⊥ P.
Câu 36. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = 2√5 B |z|= √4
5 C |z|= √5 D |z|= 5
Câu 37. Tìm m để hàm số y= mx −4
x+ m đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 38. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng 1
3; 1
!
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số nghịch biến trên khoảng −∞;1
3
!
Câu 39. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√3
a3√5
a3√5
4 .
Câu 40. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
HẾT
Trang 4-ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1