Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Phép đối xứng qua mp(P) biến đường thẳng d thành chính[.]
Trang 1Tài liệu Free pdf LATEX
(Đề thi có 5 trang)
BÀI TẬP ÔN TẬP MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 2. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 3. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
C Phần thực là −3, phần ảo là −4 D Phần thực là 3, phần ảo là −4.
Câu 4. Cho hàm số y= 3 sin x − 4 sin3
x Giá trị lớn nhất của hàm số trên khoảng
−π
2;
π 2
Câu 5. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 6. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y + 1)2+ (z + 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
4. D (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
Câu 7. [2] Cho hàm số y= log3(3x + x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Câu 8. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Hai khối chóp tứ giác.
Câu 9. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 10. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (3; 4; −4) B ~u= (2; 2; −1) C ~u= (1; 0; 2) D ~u= (2; 1; 6)
Câu 11. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Trang 2Câu 12. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 13. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 14. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
"
2;5 2
! D. " 5
2; 3
!
Câu 15. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 16. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 17. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 18. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
C Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
D Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 19. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 20. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 21. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
A. a
a
a
√ 3
Câu 22. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
C.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Câu 23. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Trục ảo.
D Trục thực.
Trang 3Câu 24 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 25. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng số cạnh của khối chóp.
C Số mặt của khối chóp bằng 2n+1.
D Số cạnh của khối chóp bằng 2n.
Câu 26. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 3
Câu 27. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√2
a3√3
4 .
Câu 28. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 29. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 30 Phát biểu nào sau đây là sai?
A lim 1
n = 0
C lim un= c (un = c là hằng số) D lim qn= 0 (|q| > 1)
Câu 31 Phát biểu nào sau đây là sai?
A lim √1
nk = 0 với k > 1
C lim un= c (Với un = c là hằng số) D lim qn= 1 với |q| > 1
Câu 32. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
A. a
√
2
a√2
√
√ 2
Câu 33. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n2− 4n C un = n3− 3n
n+ 1 . D un = 6
5
!n
Câu 34. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 6
a3
√ 6
a3
√ 6
24 .
Câu 35. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
3
√ 3
√ 3
4 .
Trang 4Câu 36. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.
Câu 37. Khối đa diện đều loại {5; 3} có số cạnh
Câu 38. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 39. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Một tứ diện đều và bốn hình chóp tam giác đều.
B Năm tứ diện đều.
C Năm hình chóp tam giác đều, không có tứ diện đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 40. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 9
√
11 − 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 9
√
11+ 19
Câu 41. Tính lim n −1
n2+ 2
Câu 42. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 43. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 44. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 45. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 46 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 47. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
A. 2
Câu 48. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Trang 5Câu 49. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60 Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 2a
3√
3
5a3
√ 3
4a3
√ 3
a3
√ 3
2 .
Câu 50. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
11a2
a2√ 5
a2√ 2
4 .
HẾT
Trang 6-ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1