1. Trang chủ
  2. » Tất cả

Đề ôn thi thpt môn toán 2 (299)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt môn toán 2 (299)
Tác giả Nhóm tác giả
Trường học Trường Đại Học Sư phạm Hà Nội
Chuyên ngành Toán học
Thể loại Đề thi
Thành phố Hà Nội
Định dạng
Số trang 5
Dung lượng 111,91 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 4 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tính lim x→3 x − 3 x + 3 bằng? A +∞ B 1 C −∞ D 0 Câu 2 Tính giới hạn lim 2n + 1 3n + 2 A 1 2 B 3 2 C 2[.]

Trang 1

Free LATEX

(Đề thi có 4 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 2. Tính giới hạn lim2n+ 1

3n+ 2

A. 1

3

2

Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = x2

ln x trên đoạn [e−1; e] là

A −1

1

e.

Câu 4. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 5. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

7

2.

Câu 6 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 7. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

(1, 01)3− 1 triệu.

C m = 100.1, 03

(1, 12)3− 1 triệu.

Câu 8. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 9. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 10. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Trang 2

Câu 11. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 12. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e2− 2; m = e−2+ 2 B M = e−2− 2; m= 1

C M = e−2+ 1; m = 1 D M = e−2+ 2; m = 1

Câu 13. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A Cả ba câu trên đều sai.

B F(x)= G(x) trên khoảng (a; b)

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 14. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

A. 1

2

2e3

Câu 15. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 16. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 17. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 18. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x +

1

x. C y= x3

− 3x D y= x4

− 2x+ 1

Câu 19. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞[ f (x)g(x)]= ab

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞

f(x) g(x) = a

b.

Câu 20. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 21. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

e

!n

3

!n

Câu 22. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Trang 2/4 Mã đề 1

Trang 3

Các mệnh đề đúng là

A (II) và (III) B Cả ba mệnh đề C (I) và (II) D (I) và (III).

Câu 23 Hình nào trong các hình sau đây không là khối đa diện?

Câu 24. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 25. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m > −5

Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. √ 1

a2+ b2 C. √ ab

a2+ b2 D. ab

a2+ b2

Câu 27. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 28 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z

dx = x + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z 1

xdx= ln |x| + C, C là hằng số

Câu 29. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng 1

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 30. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

2S h. B V = 1

3S h. C V = 3S h D V = S h

Câu 31. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 32. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A 2

√ 13

√ 2

Câu 33. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R C. D = R \ {1} D. D = (−∞; 1)

Câu 34. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 70, 128 triệu đồng B 50, 7 triệu đồng C 3, 5 triệu đồng D 20, 128 triệu đồng.

Trang 4

Câu 35. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 36. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ [a; b], ta có F0(x)= f (x)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 37. Bát diện đều thuộc loại

Câu 38. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 39. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 40. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 1

2

2

3.

HẾT

-Trang 4/4 Mã đề 1

Trang 5

ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 14/03/2023, 11:58

w