Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Tính lim x→−∞ x + 1 6x − 2 bằng A 1 6 B 1 3 C 1 2 D 1 Câu 2 Tính lim x→+∞ x − 2 x + 3 A 1 B − 2 3 C 2 D −3[.]
Trang 1Free LATEX
(Đề thi có 5 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
Câu 2. Tính lim
x→ +∞
x −2
x+ 3
Câu 3. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 4. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x)+ g(x)] = a + b
C lim
x→ +∞
f(x)
g(x) = a
b. D limx→ +∞[ f (x) − g(x)]= a − b
Câu 5. Dãy số nào có giới hạn bằng 0?
A un= n2
− 4n B un = n3− 3n
n+ 1 . C un = −2
3
!n D un = 6
5
!n
Câu 6 Phát biểu nào sau đây là sai?
A lim un= c (un = c là hằng số) B lim qn= 0 (|q| > 1)
C lim1
nk = 0
Câu 7. [1] Tính lim 1 − n
2 2n2+ 1 bằng?
A. 1
1
1
Câu 8. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1 − sin 2x B 1+ 2 sin 2x C −1+ sin x cos x D −1+ 2 sin 2x
Câu 9. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
3
!n
3
!n
e
!n
Câu 10. Tính lim
x→1
x3− 1
x −1
Câu 11. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
4. B m >
1
4. C m <
1
1
4.
Câu 12. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
A 0 < m ≤ 1 B 0 ≤ m ≤ 1 C 2 < m ≤ 3 D 2 ≤ m ≤ 3.
Câu 13. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Trang 2Câu 14. [12215d] Tìm m để phương trình 4x+ 1−x2 − 4.2x+ 1−x2 − 3m+ 4 = 0 có nghiệm
A m ≥ 0 B 0 ≤ m ≤ 9
4. C 0 < m ≤
3
4. D 0 ≤ m ≤
3
4.
Câu 15. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 16. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 2
√
11 − 3
3 . B Pmin = 18
√
11 − 29
21 C Pmin = 9
√
11+ 19
9 . D Pmin= 9
√
11 − 19
Câu 18. [1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
A m < 0 ∨ m > 4 B m < 0 C m ≤ 0 D m < 0 ∨ m= 4
Câu 19. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 21. Tính lim n −1
n2+ 2
Câu 22. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 2
5n − 3n2 B un = n2− 3n
n2 C un = n2+ n + 1
(n+ 1)2 D un = 1 − 2n
5n+ n2
Câu 23. Tính limcos n+ sin n
n2+ 1
Câu 24. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Câu 25. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
7
Câu 26 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
C Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
D Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
!
= +∞
Trang 3Câu 27. Dãy số nào sau đây có giới hạn khác 0?
A. √1
n+ 1
sin n
1
n.
Câu 28 Phát biểu nào sau đây là sai?
A lim 1
nk = 0 với k > 1 B lim un= c (Với un = c là hằng số)
C lim qn= 1 với |q| > 1 D lim √1
n = 0
Câu 29. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 2
3.
Câu 30. Tính lim 5
n+ 3
Câu 31. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
√
√ 6
a√6
3 .
Câu 32. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
A. 3a
3a√38
a√38
3a√58
29 .
Câu 33. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦
Khoảng cách từ A đến mặt phẳng (S BC) bằng
Câu 34. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. a
√
57
a√57
2a√57
√ 57
Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
A. ab
2
√
a2+ b2 C. √ ab
a2+ b2 D. √ 1
a2+ b2
Câu 36. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A. a
√
2
a
√ 2
√
Câu 37. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
√
√ 57
a√57
19 .
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
A. ab
a2+ b2 B. √ ab
2√a2+ b2 D. √ 1
a2+ b2
Trang 4Câu 39. [2] Cho hình lâp phương ABCD.A BC D cạnh a Khoảng cách từ C đến AC bằng
A. a
√
6
a√6
a√3
a√6
2 .
Câu 40. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
√
√ 6
√ 6
Câu 41. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?
A Nếu
Z
f(x)dx=
Z
g(x)dx thì f (x) , g(x), ∀x ∈ R
B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx
C Nếu
Z
f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R
D Nếu
Z
f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R
Câu 42 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 43 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
B.
Z
u0(x)
u(x)dx= log |u(x)| + C
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 44. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai đều sai D Cả hai đều đúng.
Câu 45 Các khẳng định nào sau đây là sai?
A.
Z
k f(x)dx= kZ f(x)dx, k là hằng số B.
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
f(x)dx
!0
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C
Câu 46. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
Trang 5(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Câu (I) sai B Câu (II) sai C Không có câu nào
sai
D Câu (III) sai.
Câu 47. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C Cả ba câu trên đều sai.
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 48 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 B.
Z ( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx
C.
Z
( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx D.
Z
f(x)g(x)dx=
Z
f(x)dx
Z g(x)dx
Câu 49 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
1
xdx= ln |x| + C, C là hằng số B.
Z
xαdx= α + 1xα+1 + C, C là hằng số
C.
Z
Z
dx = x + C, C là hằng số
Câu 50 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
B.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x) − g(x)]dx=Z f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
HẾT
Trang 6-ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1