1. Trang chủ
  2. » Tất cả

Đề trắc nghiệm toán 12 pdf (51)

6 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề trắc nghiệm Toán 12 pdf (51)
Trường học Trường Đại học Sư phạm Hà Nội
Chuyên ngành Toán 12
Thể loại Đề thi trắc nghiệm
Thành phố Hà Nội
Định dạng
Số trang 6
Dung lượng 115,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu A lim x→a+ f (x) = lim x→a−[.]

Trang 1

Free LATEX

(Đề thi có 5 trang)

BÀI TẬP TOÁN THPT

Thời gian làm bài: 90 phút

Mã đề thi 1

Câu 1. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= a B f (x) có giới hạn hữu hạn khi x → a.

C lim

x→a + f(x)= lim

x→a − f(x)= +∞ D lim

x→af(x)= f (a)

Câu 2. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

Câu 3. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 4. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

A −1+ sin x cos x B −1+ 2 sin 2x C 1+ 2 sin 2x D 1 − sin 2x.

Câu 5. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

5.

Câu 6. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

2.

Câu 7. [1] Tính lim 1 − 2n

3n+ 1 bằng?

A −2

1

2

3.

Câu 8. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 9. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 10 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

Câu 11. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A m ≥ 0 B 0 ≤ m ≤ 3

4. C 0 < m ≤

3

4. D 0 ≤ m ≤

9

4.

Câu 12. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [0; 4].

Trang 2

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 18

11 − 29

21 B Pmin = 9

11 − 19

9 . C Pmin = 2

11 − 3

3 . D Pmin= 9

11+ 19

Câu 14. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A. " 5

2; 3

!

"

2;5 2

!

Câu 15. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 16. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 17. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

A (2; 4; 4) B (2; 4; 6) C (1; 3; 2) D (2; 4; 3).

Câu 18. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

4. B m >

1

1

4. D m <

1

4.

Câu 19. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey+ 1 B xy0 = ey

− 1 C xy0 = ey+ 1 D xy0 = −ey

− 1

Câu 20. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 21. Tính lim 5

n+ 3

Câu 22. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 23. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 24. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 25. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Trang 3

Câu 26. Tính lim n −1

n2+ 2

Câu 27 Phát biểu nào sau đây là sai?

A lim qn= 1 với |q| > 1 B lim un= c (Với un = c là hằng số)

C lim 1

nk = 0 với k > 1 D lim √1

n = 0

Câu 28 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Câu 29. Dãy số nào sau đây có giới hạn khác 0?

A. √1

sin n

1

n+ 1

n .

Câu 30. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

2.

C lim un= 1 D Dãy số unkhông có giới hạn khi n →+∞

Câu 31. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A a

√ 57

a√57

a√57

17 .

Câu 32. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

5a

8a

2a

9 .

Câu 33. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

√ 2

a

√ 2

2 .

Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

A. √ 1

a2+ b2 B. ab

a2+ b2 C. √ ab

2

a2+ b2

Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

A. abc

b2+ c2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. c

a2+ b2

a2+ b2+ c2 D. a

b2+ c2

a2+ b2+ c2

Câu 36. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

2a√3

a√3

3 .

Trang 4

Câu 37. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 6

Câu 38. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

√ 2

4 .

Câu 39. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 40. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

16 .

Câu 41 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx

!0

= f (x)

C.

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C D. Z k f(x)dx= kZ f(x)dx, k là hằng số

Câu 42 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

C Cả ba đáp án trên.

D Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

Câu 43 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

dx = x + C, C là hằng số

C.

Z

xαdx= xα+1

α + 1+ C, C là hằng số. D.

Z 0dx = C, C là hằng số

Câu 44. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

A (I) và (III) B Cả ba mệnh đề C (I) và (II) D (II) và (III).

Câu 45. Hàm số f có nguyên hàm trên K nếu

A f (x) liên tục trên K B f (x) có giá trị nhỏ nhất trên K.

C f (x) có giá trị lớn nhất trên K D f (x) xác định trên K.

Trang 5

Câu 46 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

k f(x)dx= k

Z

f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

C.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

D.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 47. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) trên khoảng (a; b)

B G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

C Cả ba câu trên đều sai.

D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

Câu 48. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ (a; b), ta có f0(x)= F(x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ [a; b], ta có F0(x)= f (x)

Câu 49. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

A Câu (I) sai B Không có câu nào

sai

C Câu (II) sai D Câu (III) sai.

Câu 50 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B.

Z

f(x)dx

!0

= f (x)

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

HẾT

Trang 6

-ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1

Ngày đăng: 07/03/2023, 07:57

w