The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Daiichi Nuclear Power Plant with six units were overwhelmed by the tsunami and core damage occurred. Authors proposed the concept and method for evaluating core damage frequency (CDF) considering failure correlation at the multi units and sites.
Trang 1j o ur na l h o me p a g e:w w w e l s e v i e r c o m / l o c a t e / n u c e n g d e s
application
h i g h l i g h t s
•WedevelopamethodtoevaluateCDFconsideringfailurecorrelationatmultiunits
•Wedevelopaproceduretoevaluatecorrelationcoefficientbetweenmulticomponents
•WeevaluateCDFattwodifferentBWRunitsusingcorrelationcoefficients
•Weconfirmthevalidityofmethodandcorrelationcoefficientthroughtheevaluation
a r t i c l e i n f o
a b s t r a c t TheTohokuearthquake(Mw9.0)occurredonMarch11,2011andcausedalargetsunami.TheFukushima DaiichiNuclearPowerPlantwithsixunitswereoverwhelmedbythetsunamiandcoredamageoccurred Authorsproposedtheconceptandmethodforevaluatingcoredamagefrequency(CDF)considering fail-urecorrelationatthemultiunitsandsites.Basedontheabovemethod,oneofauthorsdevelopedthe procedureforevaluatingthefailurecorrelationcoefficientandresponsecorrelationcoefficientbetween themulticomponentsunderthestrongseismicmotion.Thesemethodandfailurecorrelationcoefficients wereappliedtotwodifferentBWRunitsandtheirCDFwasevaluatedbyseismicprobabilisticrisk assess-menttechnology.Throughthisquantitativeevaluation,thevalidityofthemethodandfailurecorrelation coefficientwasconfirmed
©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND
license(http://creativecommons.org/licenses/by-nc-nd/4.0/)
1 Introduction
TheTohokuearthquake(Mw9.0)occurredat14:46onMarch
11,2011andcausedalargetsunami.Thestrongseismicmotion
wasobservedattheFukushimaDaiichiNuclearPowerPlant
(F1-NPP)withsixunitsandreactorswereshutdownaftercontrolrods
hadbeeninserted.Whilethereactorswereshutdownnormally,
theywerethenoverwhelmedbythetsunamiabout46minafter
theearthquakeoccurred Thevarious componentsofthe water
intake system and emergency diesel generators were flooded
Externalpowersupplywasalsolostduetodamagebystrong
seis-micmotionsandthetsunami.Inthis situation,stationblackout
occurred.Asaconsequence,reactorcoolingsystemfunctionswere
lost,coredamageoccurredandradioactivematerialswerereleased
totheoff-sitearea(JapaneseGovernment,2011)
Regarding PRA methodology relating earthquake and earth-quakeinducedtsunami,implementationstandardsconsideringthe combinationoftheseeventsaretobedeveloped
However,inJapan,AESJatfirstpublishedSeismicPRA imple-mentationstandard(Hiranoetal.,2008;AtomicEnergySocietyof Japan,2009).ThentsunamiPRAimplementationstandard(Atomic EnergySocietyofJapan,2011)waspublished,referringresearch results(Ebisawaetal.,2012a)oftsunamiPRA
Conceptof considering combination of seismicand tsunami eventswasdevelopedbyoneofthispaperauthorsafterFukushima Daiichi (F1-NPP) accident (Ebisawa et al., 2012b) The concept was referred in revised seismic PRA implementation standard (Narumiyaetal.,2014)
And,thecurrentissuesrelatedtoseismicPRAandtsunamiPRA, basedonlessonslearnedfromtheFukushimaDaiichiaccidentare methodologyforevaluatingcoredamagefrequency(CDF)atmulti unitsandsites
http://dx.doi.org/10.1016/j.nucengdes.2015.01.002
Trang 2Fig 1.Situation of tsunami (by Tokyo Elec Power Co., 2011).
Theconcerningpointsrelatedtotheseissues whichcrossing
overpluralunitsandsitesare;
(1)Correlationofdamagebetweenpluralcomponents
(2)Damageofsharedfacilities(seawatersupplysystem,electric
powersharing,offsitepowersupplier,etc.)
(3)Humanreliability,etc
Intheseissuesrelatedtothemultiunitsandsites,thereare
manystudies(Fleming,1999;Jung,2003;Fleming,2005;Hakata,
2006;Schroer,2012;Kawamura,2014)
Inthesestudies,Fleming(2005)referredabouttheideaofsite
risk metrics instead of thetypical CDF and large early release
frequency(LERF)characterization.Thisideaisnosimplewayto
manipulate thesingle-unit PRAtocapture riskfrom multi-unit
plant.Schroer(2012)describedaboutathoroughclassificationof
multi-unitriskinteractionsanddependencies,alongwiththe
appli-cationofsuchcategoriestotheexistingmethodsformulti-unitCDF
evaluation
Kawamura(2014)pickeduptheissueofhumanreliabilitybased
onexperienceinFukushimaDainiNPPattheTohokuearthquake
andpointeduptheimportanceofclosecollaborationbetween
soft-wareandhardware
Ontheotherhand,authorsproposedtheconceptandmethod
forevaluatingCDFconsideringfailurecorrelationatthemultiunits
andsites(Ebisawaetal.,2012c).Basedontheabovemethod,oneof authorsdevelopedtheprocedureforevaluatingthefailure corre-lationcoefficientandresponsecorrelationcoefficientbetweenthe multicomponentsunderthestrongseismicmotion(Ebisawaetal., 2012c).Theseprocedureandfailurecorrelationcoefficientswere appliedtotwodifferentBWRunitsandtheirCDFwasevaluated Throughthisquantitativeevaluation,thevalidityofthemethod andfailurecorrelationcoefficientwasconfirmed
This paper describes the overview of the F1-NPP accident Thepaperhighlightstheconceptandmethodologyforevaluating CDFconsideringfailurecorrelationatmultiunitsandsites Fur-thermore,thepaperalsoreferstheevaluationresultsthatthese procedureandfailurecorrelationcoefficientswereappliedtotwo differentBWRunits
2 Overview of Fukushima NPP accident and lessons learned from the accident
2.1 OverviewofF1-NPPaccidentatTohokuearthquake/tsunami F1-NPPwasoverwhelmedbyatsunamiabout46minafterthe earthquakeasshowninFig.1.Thetsunamiheightwassohighthat theexpertsestimatedittobemorethan10mfromaphotograph showingtheoverflowstatusoftsunamiseawall(10m)inFig.1 (JapaneseGovernment,2011;Ebisawaetal.,2012c;Kameda,2012)
Trang 3Fig 3.Procedure of seismic PRA.
Asto the sea water pump facilities for component cooling,
allunits were flooded by thetsunami as shown in Fig 2 The
EmergencyDieselGenerators and switchboardsinstalled inthe
basement floor of the reactor and the turbine buildings were
floodedexceptforUnit6,andtheemergencypowersource
sup-plywaslost(JapaneseGovernment,2011;Ebisawaetal.,2012c;
Kameda,2012)
Ontheotherhand,operatorsucceededtostartRCICand
oper-atecontrollingresidualheatwell,however,RCICstoppedtowork
aftertwo days.CoolingsystemsinFLotherthan RCICwerenot
operatedduetoalossofACpower.Failureofreactorcorecooling
resultedincoredamageinabout5or6h.Temperatureand
pres-sureintheprimarycontainmentvesselroseup,andradioactive
materialswerereleasedthroughsealsintothepowerplantand
thenthesurroundingarea.Consequently,awideareawas
contam-inatedbytheradioactivematerials(JapaneseGovernment,2011;
Ebisawaetal.,2012c;Kameda,2012)
2.2 LessonslearnedfromtheF1-NPPaccident The current issues of seismic engineering based on lessons learnedfromF1-NPPaccidentarereferredasfollows(Ebisawaetal., 2012c);
(i)Occurrenceofgiganticmainearthquakeandtsunami,a com-binationofseismichazardandtsunamihazard,
(ii)Considerationofgiganticaftershockandtriggeredearthquake, (iii)Coredamageoverashortperiodoftimebasedonfunctional failureofsupportsystems(seawatersupply,powersupplyand signalsystems),
(iv)Commoncausefailureofmultistructuresandcomponents, (v)Dependencyamongneighboringunits,
(vi)Externaleventsriskevaluationatmultiunitsandsitesand (vii)Combinedemergencyofbothnaturaldisasterandthenuclear accident
Trang 4Fig 5. Accident sequence evaluation.
Theseissuesareconnectedasthefollowingperspectivesbased
ontheabove2.1.2damageofF1-NPP
-Weaksiteprotectiondespitetheevidenceonthechanceof
simul-taneoustsunamiandearthquakeiscorrespondedtotheabove(i)
and(ii)
-Flooddamagetosafetyrelatedswitchgearsandemergency
gen-eratingdiesels,whichwerelocatedinthebasementofturbine
buildingsas thekeycauseof StationBlackouttounits1–4is
correspondedtothe(iii)
-Inadequateuseofplant-specificandinternalfloodPRAtoidentify
andimprovesafetyvulnerabilitiesiscorrespondedtothe(iii)
-Inadequate knowledge and awareness about the multi-unit
dependenciesandinteractionsiscorrespondedtothe(iv)–(vi)
-Insufficientaccidentmanagementandplanningonalltheplant
units,aswellasgovernmentagenciesiscorrespondedtothe(vi)
and(vii)
Thecontentsrelatedtotheissue(iii),(v),(vi)and(vii)arefoundin chapters4and5
3 Outline of seismic PRA
3.1 SeismicPSAProcedure(AtomicEnergySocietyofJapan,
2009) TheprocedureofseismicPRAconsistsoffivestepsasshownin Fig.3
-Step1:Collectionofinformationrelatedtoearthquakesandthe settingofaccidentscenarios
-Step2:Seismichazardevaluation
-Step3:Fragilityevaluation
-Step4:Accidentsequenceevaluation
-Step5:Documentation
Intheaboveprocedure,coredamagefrequency(CDF)is evalu-atedbythefollowingEq.(1)
CDF=
0
−dH(∝)
d∝
whereH(˛)isseismichazard,P(˛)iscoredamageprobability,˛is peakgroundaccelerationatbedrock
3.2 Collectionofinformationrelatedtoearthquakeandsettingof accidentscenario(AtomicEnergySocietyofJapan,2009) Thecollectionofinformation relatedtoearthquakesand the settingofaccidentscenariosisshowninFig.3.First,relevant infor-mationshouldbegathered.Then,a“plantwalk-down”basedonthe gatheredinformationshouldbeconducted.Finally,various acci-dentscenariosbasedongatheredrelevantinformationandresults
ofthe“plantwalk-down”shouldbeset
3.3 Seismichazardevaluation(AtomicEnergySocietyofJapan,
2009) The evaluation of the seismic hazard should be considered
“aleatory uncertainty” and “epistemic uncertainty” The former derivesfromphenomenologyand thelatterderivesfromalack
ofrecognitionandinformation.Theepistemicuncertaintiesexist
inthesourcemodelsandpropagationmodelsofseismicmotionas describedabove.Evaluationofepistemicuncertaintyisconducted
byusingalogictree(LT)withthisepistemicuncertaintyasatarget
asshowninFig.4
Trang 5Fig 7.Concept of evaluation of response correlation.
3.4 Fragilityevaluation(AtomicEnergySocietyofJapan,2009)
ThefragilityF(˛)ofcomponentisevaluatedbythefollowingEq
(2)
F(˛)=
0
fR(˛,xR)
xR
0 fC(x)dx
wherefR(˛,xR)isrealisticresponseofcomponentrepresented
as logarithmic normal distribution (median MR(˛), logarithmic
standarddeviationˇR)bythefollowingEq.(3).fR(˛,xR)is
capac-ityofcomponentrepresentedaslogarithmicnormaldistribution
(medianMC,logarithmicstandarddeviationˇC)bythefollowing
Eq.(4).˛ispeakgroundaccelerationofseismicmotionatbedrock
fR(˛,xR)=√ 1
2ˇRxexp
−12
ln(x/MR(˛)) ˇR
2
(3)
fC(x)=√ 1
2ˇCxexp
−12
ln (x/MC) ˇC
2
(4)
3.5 Accidentsequenceevaluation(AtomicEnergySocietyof Japan,2009)
In cases of needing to evaluate accident sequences, the sequencesarerepresentedbyusinganeventtree(ET)basedon var-iousaccidentscenarios.Thedevelopedfaulttrees(FTs)thatconsist
ofeacheventtreeareshowninFig.5 Coredamageprobabilities(CDPs)areevaluatedbyusingETs, FTsandby examiningthefragilities ofcomponents.TheCDFis estimatedbymultiplyingtheseismichazardcurveperGalbyCDP curve,whichthencorrespondstoasemicircularshapeareathatis calculatedbytheintegrationofseismicmotionacceleration(Gal) 3.6 CalculationcodeforseismicPRAandtsunamiPRA
JNESdeveloped thecodeforevaluatingseismicandtsunami marginsbasedonseismicPRAandtsunamiPRAtechnologiesand calledasthecalculationcodeSANMARG(JNES,2014a,b).SANMARG hasthefollowingmainfunctions
(1)FunctionofseismicPRAfromtheabove3.2to3.5 (2)FunctionoftsunamiPRAasthesameprocedurefromtheabove 3.2to3.5
Trang 6Fig 9.Target buildings and components.
(3)Functionconsideringfailurecorrelation
(4)Functionofbothsingleunitandmultiunits
(5)FunctionofbothET/FTanalysisandlargeFTanalysis
4 Concept and methodology regarding failure correlation
of at multi units and sites
4.1 Characteristicsofmultiunitsandsites(Ebisawaetal.,2012c)
Seismicgroundmotioninfluenceontheregionisabout150km
inradiusontheseismichazardofJapan.Therearemultiunitsand
sitesintheregionsuchasWakasaregionwith14unitsandfive
sitesinJapanasshowninFig.6
ThestandardizationoftheplantseismicdesigninJapanhasbeen advanced.However,understrongseismicmotion,itisverylikely thatvariousstructuresandcomponentsatmultiunitsandsites wouldfailatthesametime
4.2 Conceptregardingfailurecorrelationatmultiunitsandsites (Ebisawaetal.,2012c)
JNEShasbeenstudyingfromtheviewpointof“Correlated Seis-micMotionMethodology”,“Correlationofcomponent’responsein thebuildingsatthesamesite”and“multi-unitandsiteevaluation methodology”asshowninFig.7
Trang 7Fig 11.Floor response spectra and logarithmic standard deviation.
Inaddition,itisnecessarytodeterminethe“SafetyGoal”and
“PerformanceGoal”
ConceptsregardinginfluenceonCDPoffailurecorrelationare
showninFig.8.Failurecorrelationisdefinedasthecorrelation
coefficientFj,FkbetweenperformancefunctionFjofcomponent
jinunitJandthatofFkofcomponentkinunitK.FjandFkare representedasfollows
Fj=ln
fRj fCj
=lnfRj−lnfCj
Fk=ln
fRk fCk
=lnfRk−lnfCk wherefRjandfCjareresponseandcapacityofcomponentj, respec-tively.fRkandfCkarethoseofcomponentk.InFig.8,CDPJandCDPK areCDPofunitJandK,respectively.CDPJisbiggerthanCDPK.CDPJK
isoverlapareaofCDPJandCDPK.CDPisCDPconsideredfailure correlationcoefficientbetweenunitJandK
Therightcaseisdependence(Inclusion)andis1(Complete subordination).CDPK is involved inCDPJ CDP is CDPJ in rela-tionship of union betweenJ and K (ORcase) CDP is CDPK in relationshipofintersectionbetweenJandK(ANDcase).Theleft case isdependence (Exclusion)and is−1(Mutualexclusion) CDPKisnotinvolvedinCDPJ.CDPisCDPJ+CDPKinORcase.CDP
is0inANDcase.Thecentercaseisindependenceandis0 (Com-pleteindependence).CDPisCDPJ+CDPK−CDPJKinORcase.CDP
isCDPJKinANDcase
Anexampleoftheaboveleftcaseisrelationshipbetween com-ponentwithseismicisolationandthatwithoutseismicisolation Sinceeachnaturalperiodislargeseparated,response character-isticsoftheircomponentsareverydifferent.Inthecomponents withoutseismicisolation,sincetheirresponsecharacteristicsare roughlysimilar,themostrealisticcaseissubordinationandisthe rangebetween0and1.Inthiscase,therearethefollowingthree eventcauses(Fleming,2005)
(1)Eventcausesinitiatingevent(IE)onunitJ:consequentialcore damage(CD)onunitJ
(2)Eventcausesinitiatingevent(IE)onunitK:consequentialCD
onunitJ
Trang 8Fig 13.Response coefficients between the different damping factors and periods at the different lumped mass in the different buildings.
(3)MultiunitsIEonunitJandunitK:consequentialCDonunitJ
andunitK
4.3 MethodologyforevaluatingCDFconsideringfailure
correlationatmultiunitsandsites
The CDF considering failure correlation at multi units is
expressedbythefollowingequation.Inthisreport,TheCDF
rep-resentstargetunitsastwo-units(unitjandunitk)
CDF=
0
−dH(∝)
where CDF (1/siteyear) is CDF considering failure correlation
betweenunitjandk.H(˛)isseismichazard(1/year).Pjk(˛)isCDP
consideringfailurecorrelationcoefficientbetweenunitjandk.˛
ismaximumaccelerationatbedrock(Gal)
Pjk(˛)isevaluatedbythefollowingequation(AtomicEnergy
SocietyofJapan,2009)
Pjk(˛)=(2)−1(|V|)−1/2
uj
−∞
uk
−∞
exp
−12X(˛)·V−1·X(˛) dxj
X(˛) ·V−1·X(˛) = [x j (˛)x k (˛)]
1
=
1
(7)
whereX(˛)ishorizontalmatrixofresponse(Xj(˛))andk(Xk(˛)).
X(˛)isverticalmatrixof(xj(˛)andxk(˛)).ujandukaremaximum
valueofintegralintervalwhichiscalculatedbythemedianand
logarithmicstandarddeviationoftheresponseandcapacity.j,kis
failurecorrelationcoefficientbetweenunitjandk.Viscorrelation
matrixcalculatedbyjk.V−1isreversematrixofV
ThejkobtainsthefollowingEq.(8)(AtomicEnergySocietyof
Japan,2009;Bohnetal.,1983).Intheequation,thefirstitemis
correlationofplantresponse.Theseconditemiscorrelationofplant capacity
j,k= ˇRj·ˇRk
ˇ2
Rj+ˇ2
Sj·
ˇ2
Rk+ˇ2 Sk
·Rj,Rk
ˇ2
Rj+ˇ2
Sj·
ˇ2
Rk+ˇ2 Sk
whereRj,Rkisthecorrelationcoefficientofresponsebetweenunit
j and k ˇRj and ˇRk are the logarithmic standard deviation of responseofunitjandunitk,respectively.Sj,Skisthecorrelation coefficientofcapacitybetweenunitjandunitk.ˇSjandˇSkarethe logarithmicstandarddeviationofcapacity
4.4 Procedureforevaluatingresponsecorrelationcoefficientand itsevaluationexample
4.4.1 Definitionofresponsecorrelation(Ebisawaetal.,2012c) Responsecorrelationisdefinedascorrelationofsympathetic vibrationbehaviordependingonthefrequencycharacteristicsof inputseismicmotionsandthevibrationcharacteristicsof compo-nentsandstructures
4.4.2 Evaluationprocedureofresponsecorrelationcoefficient (Ebisawaetal.,2012c)
Theevaluationprocedureandconditionsofresponsecorrelation coefficient(CC)areasfollows
(1)Frequencyandphasecharacteristicsofinputseismicmotions:
30seismicmotionsaretobesetupinvariousphaseand fre-quencycharacteristics
(2)Level of maximum acceleration of input seismic motions:
300Galforlinearresponseregionand2000Galfornon-linear responseregion
(3)Target buildingsand components: Asshownin Fig.9, reac-torbuildingandheatexchangebuildinginwhichseawater
Trang 9Table 1
supplysysteminstalled.Majortargetcomponentsareindicated
inFig.9
(4)Buildingfloormodeling.Buildingflooronwhichtarget
com-ponentsandstructuresareinstalledaremodeledas8massin
lumpedmassvibrationmodelasshowninFig.10
(5)Dampingfactorsofcomponentsandstructures:4value;1%,2%,
3%,5%
(6)Evaluationrangesofresponsespectra:5rangesdividedby0.02,
0.05,0.10,0.15,0.50s,asshowninFig.11,foreachdamping
factor
(7)EstimationequationofCC(Ri,Rk):estimationequationofCC
(Ri,Rk)isEq.(9)
Ri,Rk=Cov(Xi(˛),Xk(˛))
whereXj(˛)andXk(˛)arerandomvariablesofresponsesofplantj
andkresponse.jandkarestandarddeviationsofXj(˛)andXk(˛).
Cov(Xj(˛),Xk(˛))iscovarianceofXj(˛)andXk(˛).
4.4.3 Evaluationexamplesofresponsecorrelationcoefficient
(1)ExampleofresponseCCsbetweenthedifferentdampingfactors
andperiodsatthesamelumpedmassinthesameR/B
TheexampleofresponseCCsbetweenthedifferentdamping
factorsandperiodsatthesamelumpedmassinthesamereactor
buildingisillustratedinFig.12.Inthisfigure,thetargetlumped
massnumberistheexampleofNo.2.Therearevariousdamping
factorsandperiods.Theresponsecorrelationcoefficientsareshown
asthecolorvalues.TheCCsinthecaseofthesamelumpedmass,
dampingfactorandperiodare1.0andredvaluesinthediagonal
lines
(2)ExampleofresponseCCsbetweenthedifferentdamping
fac-torsandperiodsatthedifferentlumpedmassinthedifferent
building
TheexampleofresponseCCsbetweenthedifferentdamping
factorsandperiodsatthedifferentlumpedmassinthedifferent
buildingisillustratedinFig.13.TheresponseCCbetweenthe
dif-ferentdampingfactorsandperiodsatthesamebuildingareorange
colorareabout0.7.Ontheotherhand,thoseatthedifferent
build-ingshowsgreencollarareabout0.3
(3)Resultsofresponsecorrelationcoefficient
Table1summarizestheCCfocusedonthedifferenceoffloor
levelsandnaturalperiods.Whentwomasspointsareinstalled
onthesamelevelandhavethesamenaturalperiod,CCsare1.0 Whentwomasspointsareinstalledonthedifferentleveland havethedifferentnaturalperiod,CCsare0.5–0.6
Asforthechangeofthecorrelationcoefficient,afew ten-dencies wereseen in thesame period thoughthedamping changed
4.5 ProcedureforevaluatingCDFconsideringfailurecorrelation
atmultiunitsandsites TheprocedureforevaluatingCDFatmultiunitsandsites con-sistsoftwosteps.FirststepistoevaluatetheCDFatasingleunit consideringfailurecorrelation.Secondstepistoevaluateatmulti unitsandsitesbasedonthesingleunitevaluationresult
(1)Singleunit TheproceduretoestimatetheCDFofasingleunitconsidering failurecorrelationisasfollows
(1) In thecase of complete independence, identifythe sig-nificant components which influence the CDF in F-V importanceanalysis
(2) Outofalltheidentifiedcomponents,select3or4
(3) Identifyresponsecorrelationcoefficient
(4) UsethemtocarryoutCDFevaluationconsideringthefailure correlation
Intheabove(2),criterionofcut-offvalueforselecting3
or4componentsisoveraboutF-Vvalue0.2
(2)Twoormoreunits TheproceduretoestimatetheCDFofamulti-unitsite consid-eringfailurecorrelationisasfollows
(1) Accordingtothefailurecorrelationtreatmenttargetingtwo units,treatmentofmorethantwounitsissimilartothatof twounits
Table 2
Trang 10Fig 15.Example of fragility evaluation of emergency diesel generator.
Fig 16.Example of fragility evaluation of RCW piping supports.
... ProcedureforevaluatingCDFconsideringfailurecorrelationatmultiunitsandsites TheprocedureforevaluatingCDFatmultiunitsandsites con-sistsoftwosteps.FirststepistoevaluatetheCDFatasingleunit consideringfailurecorrelation.Secondstepistoevaluateatmulti...
(2)Twoormoreunits TheproceduretoestimatetheCDFofamulti-unitsite consid-eringfailurecorrelationisasfollows
(1) Accordingtothefailurecorrelationtreatmenttargetingtwo units, treatmentofmorethantwounitsissimilartothatof... consideringfailurecorrelation.Secondstepistoevaluateatmulti unitsandsitesbasedonthesingleunitevaluationresult
(1)Singleunit TheproceduretoestimatetheCDFofasingleunitconsidering failurecorrelationisasfollows