Fabrication of photocatalytic composite of multi-walled carbonnanotubes/TiO 2 and its application for desulfurization of diesel Thu Ha Thi Vua,* , Thu Trang Thi Nguyena, Phuong Hoa Thi N
Trang 1Fabrication of photocatalytic composite of multi-walled carbon
nanotubes/TiO 2 and its application for desulfurization of diesel
Thu Ha Thi Vua,* , Thu Trang Thi Nguyena, Phuong Hoa Thi Nguyena, Manh Hung Doa,
Hang Thi Aua, Thanh Binh Nguyenb, Dinh Lam Nguyenc, Jun Seo Parkd
a
Vietnam Institute of Industrial Chemistry, Hanoi, Viet Nam
b
Faculty of Chemistry, Hanoi University of Science, Vietnam National University, Hanoi, Viet Nam
c
Faculty of Chemical Engineering, Danang University of Technology, University of Danang, Viet Nam
d Division of Chemical Engineering, Hankyong National University, Ansung 456-749, Republic of Korea
desulfurization
[12,15,16] In addition, MWNTs have a large electricity-storage
[18–20] The rate of photo-catalytic oxidation of DBT and its
A R T I C L E I N F O
Article history:
Received 25 May 2011
Received in revised form 24 September 2011
Accepted 9 November 2011
Available online 19 November 2011
Keywords:
Desulfurization
Composite
Multi-walled carbon nanotubes
TiO 2
A B S T R A C T Compositeofmulti-walledcarbonnanotubes(MWNTs)andtitanium(IV)oxide(TiO2)werepreparedby
aheterogeneousgelationmethod.TheactivitiesoftheMWNTs/TiO2compositeswereevaluatedby photocatalyticoxidativedesulfurizationusingdibenzothiophene(DBT),4,6-dimethyldibenzothiophene (4,6-DMDBT),n-tetradecane,andcommercialdieselunderirradiationusingahigh-pressureHglamp ThemicrostructuresofMWNTs/TiO2compositeswerecharacterizedbyN2adsorption,scanningelectron microscopy,transmissionelectronmicroscope,andX-raydiffraction.Itwasfoundthatmorethan98%of sulfurcompoundsincommercialdieselwereoxidizedandremovedbytheuseoftheMWNTs/TiO2 compositeasaphotocatalyst
ß2011ElsevierLtd.Allrightsreserved
* Corresponding author Tel.: +84 422189067; fax: +84 439335410.
E-mail address: ptntd2004@yahoo.fr (T.H.T Vu).
0025-5408/$ – see front matter ß 2011 Elsevier Ltd All rights reserved.
Trang 2[12]
4,6-DMDBT
photocatalyst
Trang 3withincreasingMWNTscontentin thecomposites.Thiscanbe
Fig 1 SEM micrographs of the MWNTs/TiO 2 composites with different MWNTs/TiO 2 mass ratios: (a) TiO 2 , (b) MWNTs/TiO 2 : 1:20, (c) MWNTs/TiO 2 : 1:10, (d) MWNTs/TiO 2 :
Table 1
BET surface area (S BET ) of the MWNTs/TiO 2 composites.
/g)
Trang 4other
Fig 2 TEM micrographs of the MWNTs/TiO 2 composites with different MWNTs/TiO 2 mass ratios; (a) TiO 2 , (b) MWNTs/TiO 2 : 1:20, (c) MWNTs/TiO 2 : 1/10, (d) MWNTs/TiO 2 : 1/
3, and (e) MWNTs.
Trang 5[8,10]. When electron/hole pair recombination occurs after a
2-Theta - Scale
5 10 20 30 40 50 60 70 80
(a) (b)
(c)
TiO2
MWNTs
Fig 3 XRD patterns of (a) MWNTs, (b) TiO 2 , and (c) (1:20) MWNTs/TiO 2 composite.
Fig 4 Photoluminescence spectra of the MWNTs/TiO 2 composites with different MWNTs/TiO 2 mass ratios: (a) TiO 2 , (b) (1:20) MWNTs/TiO 2 , (c) (1:10) MWNTs/TiO 2 , (d) (1:3) MWNTs/TiO 2 , and (e) MWNTs.
Trang 6Fig 7 Comparison between the photo-activity of TiO 2 and that of (1:20) MWNTs/ TiO 2 in the photo-oxidation reaction of (a) DBT, and (b) 4,6-DMDBT.
Fig 6 Adsorbability of TiO 2 , MWNTs/TiO 2 composites (mass ratios 1:20) for DBT,
4,6-DMDBT and diesel under dark condition.
Fig 8 Relation between sulfur content and reaction time.
Trang 74 Conclusions
Acknowledgement
References
[1] T.V Rao, P.M Krishna, D Paul, B.R Nautiyal, J Kumar, Y.K Sharma, S.M Nanoti, B.
Sain, M.O Garg, Petrol Sci Technol 29 (2011) 626–632.
[2] C.G Silva, J.L Faria, Appl Catal B: Environ 101 (2010) 81–89.
[3] J Robertson, T.J Bandosz, J Colloid Interface Sci 299 (2006) 125–135 [4] J.T.S Matsuzawa, S Dato, T Ibusuki, J Photochem Photobiol A: Chem 149 (2002) 183–189.
[5] D Zhao, J Zhang, J Wang, W Liang, H Li, Petrol Sci Technol 27 (2009) 1–11 [6] J Rabani, J Phys Chem 93 (1989) 7707–7713.
[7] T.S.I Honma, H Komiyama, J Phys Chem 97 (1993) 6692–6695.
[8] K Fujihara, S Izumi, T Ohno, M Matsumura, J Photochem Photobiol A: Chem.
132 (2000) 99–104.
[9] K Zhang, F.J Zhang, M.L Chen, W.C Oh, Ultrason Sonochem 18 (2011) 765–772 [10] Y Yao, G Li, S Ciston, R.M Lueptow, K.A Gray, Environ Sci Technol 42 (2008) 4952–4957.
[11] T.C.A Jitianu, M Berger, R Benoit, F Be´guin, S Bonnamy, J Non-Cryst Solids 345–
346 (2004) 596–600.
[12] M.L Chen, F.J Zhang, W.C Oh, New Carbon Mater 24 (2009) 159–166 [13] W.D Wang, P Serp, P Kalck, J.L Faria, Appl Catal B: Environ 56 (2005) 305–312 [14] H Yu, X Quan, S Chen, H Zhao, J Phys Chem C 111 (2007) 12987–12991 [15] K Woan, G Pyrgiotakis, W Sigmund, Adv Mater 21 (2009) 2233–2239 [16] X Gui, J Wei, K Wang, A Cao, H Zhu, Y Jia, Q Shu, D Wu, Adv Mater 22 (2010) 617–621.
[17] S Aryal, C.K Kim, K.-W Kim, M.S Khil, H.Y Kim, Mater Sci Eng C 28 (2008) 75– 79.
[18] A Jitianu, T Cacciaguerra, R Benoit, S Delpeux, F Be´guin, S Bonnamy, Carbon 42 (2004) 1147–1151.
[19] Y Yu, J.C Yu, C.-Y Chan, Y.-K Che, J.-C Zhao, L Ding, W.-K Ge, P.-K Wong, Appl Catal B: Environ 61 (2005) 1–11.
[20] W Fan, L Gao, J Sun, J Am Ceram Soc 89 (2006) 731–733.
[21] R Vargas, O Nu´n˜ez, J Mol Catal A: Chem 294 (2008) 74–81.
[22] J Cho, S Schaab, J Roether, A Boccaccini, J Nanopart Res 10 (2008) 99–105 [23] M Corrias, B Caussat, A Ayral, J Durand, Y Kihn, P Kalck, P Serp, Chem Eng Sci.
58 (2003) 4475–4482.
[24] W Zhou, K Pan, Y Qu, F Sun, C Tian, Z Ren, G Tian, H Fu, Chemosphere 81 (2010) 555–561.
[25] S Yang, W Tang, Y Ishikawa, Q Feng, Mater Res Bull 46 (2011) 531–537 [26] S.T Martin, M.R Hoffmann, W Choi, D.W Bahnemannt, Chem Rev 95 (1995) 69– 96.
[27] P.S.W.D Wang, P Kalck, J.L Faria, J Mol Catal A: Chem 235 (2005) 194.