1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Formulae involving ∇ Vector Identities with Proofs: Nabla Formulae for Vector Analysis李国华 doc

8 444 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 86,93 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Formulae involving ∇ Vector Identities with Proofs: Nabla Formulae for Vector Analysis 李国华 (Kok-Wah LEE) @ 08 May 2009 Version 1.0 No.. 4, Jalan Bukit Beruang 5, Taman Bukit Beruang, 75

Trang 1

Formulae involving ∇ Vector Identities with Proofs: Nabla Formulae for Vector Analysis

李国华 (Kok-Wah LEE) @ 08 May 2009 (Version 1.0)

No 4, Jalan Bukit Beruang 5, Taman Bukit Beruang, 75450 Bukit Beruang, Melaka, Malaysia

Email: contact@xpreeli.com; E96LKW@hotmail.com Tel.: +6013-6134998; +606-2312594; +605-4664998

www.xpreeli.com All rights reserved

Vector: A = A 1 i + A 2 j + A 3 k B = B 1 i + B 2 j + B 3 k C = C 1 i + C 2 j + C 3 k

Scalar: φ = φ(x,y,z) ψ = ψ(x,y,z)

Nabla:

z

k y

j x

i

∂ +

∂ +

=

(1) (A x B).C ≡ (B x C).A ≡ (C x A).B

(2) A x (B x C) ≡ (A.C)B - (A.B)C

(3) Prove ∇(φ+ ψ) = ∇φ + ∇ψ

z

j y

i x

k z

j y

i

+

∂ +

+

∂ +

+

= +





∂ +

∂ +

ψ φ

z

k z

j y

j y

i x

i

∂ +

∂ +

∂ +

∂ +

∂ +



∂ +

∂ +

∂ +





∂ +

∂ +

k z

j y

i x

k z

j y

i x

ψ ψ

ψ φ

φ φ



∂ +

∂ +

∂ +





∂ +

∂ +

k z

j y

i x

k z

j y

i x

∴ ∇(φ + ψ) = ∇φ + ∇ψ

(4) Prove ∇(φψ) = φ∇ψ + ψ∇φ

z

j y

i x

k z

j y

i

∂ +

∂ +

=





∂ +

∂ +

φψ

Trang 2

= k

x

k x

j x

j x

i x

i

∂ +

∂ +

∂ +

∂ +

∂ +

ψ

ψ φ

φ ψ

ψ φ

φ ψ

ψ φ



∂ +

∂ +

∂ +





∂ +

∂ +

k z

j y

i x

k z

j y

i x

φ φ φ ψ ψ ψ ψ φ



∂ +

∂ +

∂ +





∂ +

∂ +

k z

j y

i x

k z

j y

i x

∴ ∇(φψ) = φ∇ψ + ψ∇φ

(5) Prove ∇.(A + B) = ∇.A + ∇.B

k z

j y

i x B



∂ +

∂ +

= +

z

B A y

B A x

B A

+

∂ +

+

∂ +

+

= LHS

z

j y

i x k A j A i A k z

j y

i x B



∂ +

∂ +

∂ + + +





∂ +

∂ +

=

+

=

z

B y

B x

B z

A y

A x

A

∂ +

∂ +

∂ +

∂ +

∂ +

z

B A y

B A x

B A

+

∂ +

+

∂ +

+

= RHS LHS = RHS

∇.(A + B) = ∇.A + ∇.B

(6) Prove ∇x(A + B) = ∇xA + ∇xB

x k z

j y

i x B A



∂ +

∂ +

= +

=

3 3 2 2 1

A

z y

x

k j

i

+ +

+

k y B A x

B A j z B A x

B A i z B A y

B A





∂ +

∂ +

∂ +

∂ +

∂ +





∂ +

∂ +

Trang 3

= 





∂ +





∂ +





∂ +





k y

B x

B j z

B x

B i z

B y

B k y

A x

A j z

A x

A i z

A y

=

3 2

A

z y x

k j i

3 2

B

z y x

k j i

∇x(A + B) = ∇xA + ∇xB

(7) Prove ∇.(φA) = (∇φ).A + φ(∇.A)

( A i A j A k)

k z

j y

i x

.( φ =∂∂ +∂∂ +∂∂  φ + φ + φ

= ( ) ( ) ( )

z

A y

A x

A

∂ +

∂ +

∂ φ 1 φ 2 φ 3 = LHS

+ +





∂ +

∂ +

∂ + + +





∂ +

∂ +

=

+

z

j y

i x k

A j A i A k z

j y

i x A

).

∂ +

∂ +

∂ +





∂ +

∂ +

z

A y

A x

A z

A y

A x

3 2

∂ +

∂ +





∂ +

∂ +

∂ +

z

A z A y

A y A x

A x

3 2 2

1

= ( ) ( ) ( )

z

A y

A x

A

∂ +

∂ +

∂ φ 1 φ 2 φ 3 = RHS LHS = RHS

∴ ∇.(φA) = (∇φ).A + φ(∇.A)

(8) Prove ∇x(φA) = (∇φ)xA + φ(∇xA)

( )

3 2

A

z y x

k j i

A

x

φ φ

φ

φ

=

k y

A x

A j z

A x

A i z

A y

A





∂ +





y

A y

A x

A x

A j z

A z

A x

A x

A i y

A y

A y

A y

A





∂ +

∂ +

∂ +





∂ +

φ φ φ

φ φ

φ φ

φ φ

φ

2 2 1

1 3

3 2

2 3

3





∂ +





k y A x A j z A x A i y A y

1 2 1

3 2

3

Trang 4

∂ +

y

A x

A j z

A x

A i y

A y

φ φ φ

φ φ

φ

=

3 2

A

z y x

k j i

3 2

A

z y x

k j i

∂ φ

∴ ∇x(φA) = (∇φ)xA + φ(∇xA)

(9) Prove ∇.(AxB) = B.(∇xA) - A.(∇xB)

3 2 1

3 2 1

)

.(

B B B

A A A

k j i k z

j y

i x



∂ +

∂ +

=

= k [ (A B A B ) (i A B A B)j (A B A B)k]

z

j y

i



∂ +

∂ +

z

B A B A y

B A B A x

B A B A

∂ +





∂ +





∂ +

+

=

y

A x

A j z

A x

A i z

A y

A k B j B i B xA

3 2

)

.(

∂ +





y

A x

A B z

A x

A B z

A y

A

3 1 3 2 2 3 1

Similarly, by interchanging the variable of A and B, we have





∂ +





∂ +

+

=

y

B x

B j z

B x

B i z

B y

B k A j A i A xB

3 2

)

.(

∂ +





y

B x

B A z

B x

B A z

B y

B

3 1 3 2 2 3 1

∂ +

∂ +





∂ +

x

B A x

A B z

B A z

A B y

B A y

A

3 3 2 1 2 2 1 1 3 3 1





∂ +

∂ +

∂ +

∂ +

∂ +

y

B A y

A B x

B A x

A B z

B A z

A

1 1 3 3 2 2 3 2 1 1 2

y

B A x

B A z

B A x

B A z

B A y

B A

∂ +

∂ +

∂ 3 1 2 1 3 2 1 2 2 3 1 3

z

B A B A y

B A B A x

B A B A

∂ +

∂ 2 3 3 2 1 3 3 1 1 2 2 1

∇.(AxB) = B.(∇xA) - A.(∇xB)

Trang 5

(10) Prove ∇x(AxB) = (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B)

B B B

A A A

k j i x AxB

3 2 1

3 2

=

=

1 2 2 1 3 1 1 3 2 3 3

A

z y

x

k j

i

k y B A B A x

B A B A j z

B A B A x

B A B A i z B A B A y

B A B A





∂ +





= LHS

z

A y

A x

A k A j A i A z

B y

B x

3 2 1 3 2

∂ +

∂ +

− + +





∂ +

∂ +

y

A B x

A B y

A B x

A B j z

A B x

A B z

A B x

A B i z

A B y

A B z

A

B

y

A

∂ +

∂ +





+

3 1 3 3 2 3 1 3 2 1 2 2 3 2 1 3 1 2 1 1 3

1

2

Similarly, by interchanging the variable of A and B, we have

z

B y

B x

B k B j B i B z

A y

A x

3 2 1 3 2



∂ +

∂ +

− + +





∂ +

∂ +

y

B A x

B A y

B A x

B A j z

B A x

B A z

B A x

B A i z

B A y

B A z

B

A

y

B

∂ +

∂ +

∂ +

∂ +





+

3 1 3 3 2 3 1 3 2 1 2 2 3 2 1 3 1 2 1 1 3

1

2

(B.∇)A - B(∇.A) - (A.∇)B + A(∇.B)

z

B A z

A B y

B A y

A B z

B A z

A B y

B

A

y

A

∂ +





∂ +

∂ +

∂ +





+

3 3 1 1 2 2 1 3 1 1 3 2 1

1

2

j z

B A z

A B x

B A x

A B z

B A z

A B x

B A x

A

∂ +

∂ +

∂ +

∂ +

∂ +

3 3 2 2 1 1 2 3 2 2 3 2 1 2 1

k y

B A y

A B x

B A x

A B y

B A y

A B x

B A x

A





∂ +

∂ +





∂ +

∂ +

∂ +

2 2 3 3 1 1 3 2 3 3 2 1 3 3 1

k y B A B A x

B A B A j z B A B A x

B A B A i z B A B A y

B

A

B

A





∂ +

∂ +

∂ +





∂ +

k y B A B A x

B A B A j z B A B A x

B A B A i z B A B A y

B

A

B

A





∂ +





= RHS

Trang 6

∇x(AxB) = (B.∇)A - B(∇.A) - (A.∇)B + A(∇.B)

(11) Prove ∇(A.B) = (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB)

∇(A.B) = k (A1B1 A2B2 A3B3)

z j y i



∂ +

∂ +

z

B y

B x



∂ +

∂ +





∂ +





∂ +

+

=

y

A x

A j z

A x

A i z

A y

A x k B j B i B xA

3 2 1

) (

=

y

A x

A x

A z

A z

A y

A

B B

B

k j

i

∂ 3 2 1 3 2 1

3 2

1

z

A y

A B x

A z

A j B z

A y

A B y

A x

A i B x

A z

A B y

A x

A





∂ +













2 2 3 1 3 1 3

2 3 1 1 2 3

3 1 2 1 2

Similarly, by interchanging the variable of A and B, we have

z

A y

A x



∂ +

∂ +





∂ +





∂ +

+

=

y

B x

B j z

B x

B i z

B y

B x k A j A i A xB

3 2 1

) (

=

y

B x

B x

B z

B z

B y

B

A A

A

k j

i

∂ 3 1 2 1 2 3 2 3 1

z

B y

B A x

B z

B j A z

B y

B A y

B x

B i A x

B z

B A y

B x

B





∂ +













2 2 3 1 3 1 3

2 3 1 1 2 3

3 1 2 1 2

Hence

(B.∇)A + Bx(∇xA)

z

A B z

A B z

A B j y

A B y

A B y

A B i x

A B x

A B x

A

∂ +

∂ +

∂ +





∂ +

∂ +

∂ +

∂ +

∂ +

2 1 1 3 3 3

3 1 1 2 2 3 3 2 2 1 1

(A.∇)B + Ax(∇xB)

z

B A z

B A z

B A j y

B A y

B A y

B A i x

B A x

B A x

B

∂ +

∂ +

∂ +





∂ +

∂ +

∂ +

∂ +

∂ +

2 1 1 3 3 3

3 1 1 2 2 3 3 2 2 1 1

Trang 7

(B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB)

k z

B A z

B A z

B A j y

B A y

B A y

B A i x

B A x

B A x

B

∂ +

∂ +

∂ +





∂ +

∂ +

∂ +

∂ +

∂ +

k z

B A B A B A j y

B A B A B A i x

B A B A B

A

+ +

∂ +

+ +

∂ +

+ +

= k (A1B1 A2B2 A3B3)

z

j y

i



∂ +

∂ +

LHS = RHS

∇(A.B) = (B.∇)A + (A.∇)B + Bx(∇xA) + Ax(∇xB)

(12) Prove ∇.(∇φ) = ∇2φ



∂ +

∂ +





∂ +

∂ +

z

k y

j x

i z

k y

j x

.

= φ φ φ 2φ

2 2

2 2

2

2

=

∂ +

∂ +

z y x

∴ ∇.(∇φ) = ∇2φ

(13) Prove ∇x(∇φ) = 0

∂ +

∂ +





∂ +

∂ +

z

k y

j x i x z

k y

j x

=

z y x

z y x

k j i

φ φ φ

= ( φzy − φyz) i − ( φzx − φxz) j + ( φyx − φxy) k

Since φ has continuous second order partial derivatives, we have

φxy = φyx φyz = φzy φzx = φxz

Trang 8

(14) Prove ∇.(∇xA) = 0





∂ +









∂ +

∂ +

k y

A x

A j z

A x

A i z

A y

A z

k y

j x

∂ +









z y

A z x

A y

z

A y x

A x

z

A x y

2 2 1 2 3 2 2 2 3 2

= 0

∇.(∇xA) = 0

(15) Prove ∇x(∇xA) = ∇(∇.A) - ∇2A





∂ +









∂ +

∂ +

k y

A x

A j z

A x

A i z

A y

A x z

k y

j x

=

y

A x

A x

A z

A z

A y

A

z y

x

k j

i

1 2 3 1 2 3

y z

A y

A x

A x z

A j z

A z y

A x y

A x

A i x z

A z

A y

A y

x

A





∂ +

∂ +





∂ +





∂ +

2 3 2 2 3 2 1 2 2

2 2 3 2 1 2 2 2 2 3 2 2 1 2 2 1 2 2

2

= LHS

∇(∇.A) - ∇2A

z y x z

A y

A x

A z

k y

j x

2 2 2 2

2 3 2



∂ +

∂ +





∂ +

∂ +





∂ +

∂ +

y

A x

A z y

A z x

A j z

A x

A y z

A y x

A i z

A y

A x z

A x y

A





∂ +

∂ +





∂ +

∂ +





∂ +

2 3 2 2 3 2 2 2 1 2 2

2 2 2 2 2 3 2 1 2 2 1 2 2 1 2 3 2 2 2

= RHS

LHS = RHS

∇x(∇xA) = ∇(∇.A) - ∇2A

Ngày đăng: 22/03/2014, 16:22

TỪ KHÓA LIÊN QUAN