1. Trang chủ
  2. » Giáo án - Bài giảng

higgs particles interacting via a scalar dark matter field

2 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Higgs Particles Interacting Via A Scalar Dark Matter Field
Tác giả Yajnavalkya Bhattacharya, Jurij Darewych
Trường học York University
Chuyên ngành Physics
Thể loại Research Paper
Năm xuất bản 2016
Thành phố Newark
Định dạng
Số trang 2
Dung lượng 84,76 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Higgs particles interacting via a scalar Dark Matter fieldYajnavalkya Bhattacharya1 , 2 , aand Jurij Darewych2 , b 1New Jersey Institute of Technology, Newark, NJ, USA 2York University, T

Trang 1

Higgs particles interacting via a scalar Dark Matter field

Yajnavalkya Bhattacharya1 , 2 , aand Jurij Darewych2 , b

1New Jersey Institute of Technology, Newark, NJ, USA

2York University, Toronto, Canada

Abstract We study a system of two Higgs particles, interacting via a scalar Dark Matter

mediating field The variational method in the Hamiltonian formalism of QFT is used

to derive relativistic wave equations for the two-Higgs system, using a truncated

Fock-space trial state Approximate solutions of the two-body equations are used to examine

the existence of Higgs bound states

Dark matter particles (DM) of massm are described by a spinless, massive scalar feld φ, –

inter-acting with the self-coupled Standard Model Higgs field χ, with mass μ The Lagrangian density of this model is ( = c = 1)

L = 1

2∂νφ ∂νφ −1

2m2φ2− κ φ4+1

2∂νχ ∂νχ −1

2μ2χ2− λ v χ3−1

4λ χ4

−g1χ φ2− η1χ2φ2− η2χφ3− η3χ3φ − g2χ2φ (1) where κ, λ, g1, g2, v and ηj(j = 1, 2, 3) are coupling constants; λ, κ, η jbeing dimensionless, and v, gi, (i=1,2), having dimensions of mass In canonical quantization the classical fields φ, χ are promoted

to operators

In the Hamiltonian formalism of QFT, the equations to be solved are ˆPβ|Ψ = Qβ|Ψ, ˆPβ= ( ˆH, ˆP)

andQβ = (E, Q) are the energy-momentum operator and corresponding eigenvalues The β = 0

(energy) component of the equation is generally impossible to solve Approximate solutions can be obtained using the variational principleδΨtrial | ˆH − E|Ψ trialt=0 = 0 where ˆH is normal ordered, and

trial is a suitable trial state Trial states are taken to be superpositions of channel Fock states The simplest trial states that yield non-trivial results are

trial =



dp1dp2F1(p1, p2)h†(p1)h†(p2)|0 +

 dp1dp2dp3F2(p1, p2, p3)h†(p1)h†(p2)d†(p3)|0

(2) whereh denotes Higgs, d Dark Matter operators that satisfy the usual commutation rules F i, (i = 1, 2)

are variational channel wave functions

For the case where g1=ηj=0, the equations of motion, in the rest frame→−Q=0, that follow from the

variational principle are:

F1(q1, −q1)2ω(q1, μ) − E= −g2



(2π)3/2

2ω(q1, μ)√

2ω(p,m)

2ω(q1+ p, μ), (3)

a e-mail: yajnaval@gmail.com

b e-mail: darewych@yorku.ca

DOI: 10.1051/

C

Owned by the authors, published byEDP Sciences, 201

/201 0 0 (201 ) epjconf

61

6

6

1

1 0 02

3

3

8 2

8

1

1

4

Trang 2

E = 2.0

E = 1.5

E = 1.0

E = 0.5

E = 0.3

m

Q

Emin

Q

1 1.2 1.4 1.6 1.8 2

Figure 1 E min /μ as a function of m/μ for various values of α For a given value of α, the two-Higgs ground

state binding energy decreases with increasingm/μ from the Coulombic value, 1

4μ α2 atm = 0, to zero at a

critical value ofm The critical values of m/μ, beyond which no two-Higgs bound states are possible correspond

to points where the curves cross the lineE min = 2 μ These critical points occur where m/μ = α/(2 Z), where

Z  1 Accurate numerical solutions of Equation (6) yield Z = 0.839908.

F2(q1, q2, q1+ q2)ω(q1, μ) + ω(q2, μ) + ω(q1+ q2, m) − E

(2π)3/2

2ω(q1, μ)√

2ω(q1+ q2, m)2ω(−q2, μ). (4) Exact, analytic solutions of the coupled, relativistic equations are not possible, so approximate variational-perturbative solutions will be considered In the lowest order approximation, we set ω(q1, μ) + ω(q2, μ)  E in (4) whereupon equation (4) simplifies to

F2(q1, q2, q1+ q2)ω(q1+ q2, m) = − g2 F1(−q2, q2)

(2π)3/2)

2ω(q1, μ)√

2ω(q1+ q2, m)2ω(−q2, μ) (5) Thus in the rest frame, equation (3) becomes a single relativistic equation

f (q) 2ω(q, μ) − E= αμ2



ω(q, μ) ω2(p− q, m) ω(p, μ). (6)

wheref (q) = F1(−q, q) , and α = g2

2/(16π2μ2) is a dimensionless coupling constant

Approximate variational solutions of (6) in the non-relativistic limit, for the ground state, are obtained using the trial state f (p) = ω(p, μ)

(p2+ b2)2, where b is an adjustable parameter obtained by mini-mizingE The results are given in Figure 1.

EPJ Web of Conferences

08021-p.2

Ngày đăng: 04/12/2022, 10:35

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w