CURRENT STATUS AND FUTURE PROSPECTS

Một phần của tài liệu Bioprocessing of renewable resources to commodity bioproducts (Trang 261 - 276)

In the past few decades, almost all butanol were produced via petrochemical routes.

In recent years, increasing crude oil price and concerns about environmental prob- lems have renewed the interests in butanol production through biological fermentation

processes. Great efforts have been focused on the academic research on ABE fermen- tation with solventogenic clostridia. Transcriptional analyses and metabolic engineer- ing have been extensively performed onC. acetobutylicum(Green et al., 1996; Alsaker et al., 2004; Alsaker and Papoutsakis, 2005; Shao et al., 2007; Papoutsakis, 2008;

Alsaker et al., 2010). A bacterial group II intron-based genetic engineering system (ClosTron or TargeTron) has been recently developed for directly constructing muta- tion inClostridiumspecies (Heap et al., 2007), and various applications based on this system have been reported (Cooksley et al., 2012; Lehmann et al., 2012a,b). In addi- tion, conversion of low-value feedstocks like agricultural residues and optimization of fermentation process and downstream manipulations have also been studied (Ezeji et al., 2005, 2007a,b; Qureshi et al., 2008; Mariano et al., 2011). In industry, in recent years, a number of big companies started to market butanol and develop the biobu- tanol processes. Many venture companies have also been established focusing on the commercialization of biobutanol. Several major players include Cathay Industrial Biotech (Shanghai, China), Cobalt Technologies (Mountain view, CA, USA), Green Biologics (Abingdon, England), METabolic EXplorer (Clermont-Ferrand, France), etc. (Table 9.4) (Mascal, 2012). With the blending wall issue for bioethanol indus- try and the expiration of the blenders tax credit (NYTimes, 2012), many ethanol producers are considering to retrofit and transform their existing ethanol production infrastructures for butanol production (WSJ, 2009; Ethanolproducer.com, 2012). The prospects for biological butanol production look really bright.

However, there are still many challenges for the large-scale industrial produc- tion of butanol through clostridia fermentation processes. For example, high cost of the substrates, low yield and final titer, diversion of substrates to other unwanted bioproducts (like acetone and acids), high energy requirement for butanol recovery from dilute streams. Great efforts on overcoming these challenges should be made in order to significantly improve the butanol production process. First, the search and utilization of low-value and abundant substrates that do not compete with food and feed supplies would offer tremendous economic benefits. These include the cellulosic residues or by-products from agricultural and industrial processes, municipal wastes, and other energy biomasses. Effective pretreatment and biomass conversion tech- niques must be developed to satisfy the efficient fermentation requirement. Second, search or development of new strains and improvement of the existing strains should be performed in order to acquire better degradation capabilities on vast ranges of substrates, higher butanol yield, titer, and productivity. Recently, several new solven- togenic clostridia strains have been reported, and the genomes have been sequenced (Bao et al., 2011; Hu et al., 2011; Wu et al., 2012). For strain improvement, transcrip- tional analysis, metabolic engineering, and system biology tools can play key roles.

On one hand, butanol producers such as solventogenic clostridia can be mutated or engineered for desired properties. On the other, butanol production pathways can be introduced into desired industrial microorganisms for butanol production pur- pose. For example,E. coli has been attempted as the host and engineered for this objective (Ranganathan and Maranas, 2010; Shen et al., 2011). AdaptedP. putida strains that can grow in the presence of up to 6% (vol/vol) butanol has been reported, which could be potential hosts for biobutanol production (Ruhl et al., 2009). Third,

TABLE9.4MajorCompaniesCurrentlyMarketingn-Butanol CompanyTimefoundedLocationTechnologyDevelopmentstatus Butylfuel,LLC1991Gahanna,Ohio,USABasedonatwo-stagefermentation thatdecouplesbutyricacid productionfrombutanol formation

Apilotplantincorporatingthis technologyinafibrousbed bioreactorisunderdevelopment. GreenBiologicsmergedwith ButylfuelinJanuary2012(Green Biologicspressrelease,2012) CathayIndustrial Biotech1997Shanghai,ChinaContinuousclostridiaABE fermentation,withcornstarchas thefeedstock;optimizedprocess reducedwaterandenergyusage significantly

Currentlythelargestbiobutanol producerintheworld,witha productioncapacityof21million gallonsofbiobutanolperyear METabolicEXplorer1999Clermont-Ferrand, FranceUsingitscombinedexpertisein molecularbiology,metabolic engineering,andbioinformatics todesignhigh-performance microorganismsthatcan transformplant-derivedraw materialsintoanexistingbulk chemical,includingbutanol

Withabroadproductportfolio,the aredeveloping“anextremely flexibleandcompetitive fermentationprocessforbutanol production,”whichcanutilize sugar,starch,andhemicellulosic feedstocks GreenBiologics2003Abington,UKThetechnologyplatformincludesa largecollectionofnativeand geneticallymodifiedclostridia, fermentationprocessdesign, productionstraintofeedstock matching,andseparations MergedwithButylfuelinJanuary 2012;isaimingatretrofit existingethanolplantsand internationalmarketexpansion includingChina,Brazil,etc. (Ethanolproducer.com,2012) (continued

249

TABLE9.4(Continued) CompanyTimefoundedLocationTechnologyDevelopmentstatus CobaltTechnologies2005MountainView,CA, USAAnimmobilizedcelltechnology usingaproprietary, nongeneticallymodified clostridiastrainwithhigh productivityandabilityto convertbothC5andC6sugars intobutanolforoperationina continuousfermentationreactor Currentlyoperatinga5000GPY pilotfacilitysinceJune2009. Cobaltisnowintheprocess commissiona470,000GPY cellulosicbiobutanolfacility TetravitaeBioscience (Eastman Chemical)

2006Chicago,IL,USATheplatformisbasedonastable, nongeneticallymodified C.beijerinckiistrainwhichoffers highbutanolyields,reduced productinhibition,andtheability toutilizebothC5andC6sugars

Tryingtoadaptthetechnology processcellulosicfeedstocks; acquiredbyEastmanChemical CompanyinNovember2011 (Eastmanpressrelease,2011) Butalco2007CantonofZug, SwitzerlandBasedongeneticallyoptimized yeastsforproductionofadvanced biofuelslikeethanolandbutanol byusingpentosesugars Workingtogetherwithpartners developintegratedproduction processes(Butalco.com,2012)

250

development of novel fermentation processes and improvement of the downstream processing would be significant for improving the butanol production economics.

With the advancement of separation technology and fermentation engineering, more efficient and cost-effective downstream processes are expected in the future. With the rapid development in molecule biology and process engineering, significant advances have been and will be made on this old traditional process; it is expected that the fermentative production of biobutanol from renewable resources could become com- mercially viable in the near future.

REFERENCES

Alsaker KV, Papoutsakis ET. (2005). Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol, 187, 7103–

7118.

Alsaker KV, Spitzer TR, Papoutsakis ET. (2004). Transcriptional analysis of spo0A over- expression inClostridium acetobutylicumand its effect on the cell’s response to butanol stress.J Bacteriol, 186, 1959–1971.

Alsaker KV, Paredes C, Papoutsakis ET. (2010). Metabolite stress and tolerance in the produc- tion of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobeClostridium acetobutylicum.Biotechnol Bioeng, 105, 1131–1147.

Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC. (2008). Metabolic engineering ofEscherichia colifor 1-butanol production.

Metab Eng, 10, 305–311.

Atsumi S, Liao JC. (2008). Metabolic engineering for advanced biofuels production from Escherichia coli.Curr Opin Biotechnol, 19, 414–419.

Baer SH, Blaschek HP, Smith TL. (1987). Effect of butanol challenge and temperature on lipid-composition and membrane fluidity of butanol-tolerantClostridium acetobutylicum.

Appl Environ Microbiol, 53, 2854–2861.

Bahl H, Gottschalk G. (1984). Parameters affecting solvent production byClostridium aceto- butylicumin continuous culture.Biotechnol Bioeng, 14, 215–223.

Bahl H, Gottwald M, Kuhn A, Rale V, Andersch W, Gottschalk G. (1986). Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum. Appl Environ Microbiol, 52, 169–172.

Bao GH, Wang RJ, Zhu Y, Dong HJ, Mao SM, Zhang YP, Chen ZG, Li Y, Ma YH. (2011).

Complete genome sequence ofClostridium acetobutylicumDSM 1731, a solvent-producing strain with multireplicon genome architecture.J Bacteriol, 193, 5007–5008.

Beijerinck MW. (1893). ¨Uber die butylalkoholg¨ahrung und das butylferment.Verh K Akad Wet, 10, 1–51.

Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV. (2010).

Reconstructing the clostridial n-butanol metabolic pathway inLactobacillus brevis.Appl Microbiol Biotechnol, 87, 635–646.

Biebl H. (1999).Clostridium acetobutylicum. In: Robinson RK, Batt CA, Patel PD, editors.

Encyclopedia of Food Microbiology. London: Academic Press, pp. 445–451.

biofuelsdigest.com (2012). Available at: http://www.biofuelsdigest.com/bdigest/2012/01/26/

researcher-says-flash-fermentation-discovery-predates-gevo-patent/ (Last accessed:

1/12/2014).

Bond-Watts BB, Bellerose RJ, Chang MCY. (2011). Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways.Nat Chem Biol, 7, 222–227.

Booth IR. (1985). Regulation of cytoplasmic pH in bacteria.Microbiological Reviews, 49, 359–378.

Bowles LK, Ellefson WL. (1985). Effects of butanol onClostridium acetobutylicum.Appl Environ Microbiol, 50, 1165–1170.

Boynton ZL, Bennett GN, Rudolph FB. (1996). Cloning, sequencing, and expression of genes encoding phosphotransacetylase and acetate kinase fromClostridium acetobutylicum ATCC 824.Appl Environ Microbiol, 62, 2758–2766.

butalco.com (2012). Available at: http://butalco.com/ (Last accessed: 1/12/2014).

Chen JS. (1995). Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia.Fems Microbiol Rev, 17, 263–273.

Clomburg JM, Gonzalez R. (2010). Biofuel production inEscherichia coli: the role of metabolic engineering and synthetic biology.Appl Microbiol Biotechnol, 86, 419–434.

Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP. (2012). Targeted mutagenesis of theClostridium acetobutylicumacetone–butanol–ethanol fermentation pathway.Metab Eng, 14, 630–641.

Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y. (2012). Introducing a single secondary alco- hol dehydrogenase into butanol-tolerantClostridium acetobutylicumRh8 switches ABE fermentation to high level IBE fermentation.Biotechnol Biofuels, 5, 44.

Darvill AG, Hall MA, Fish JP, Morris JG. (1977). The intracellular reserve polysaccharide of Clostridium pasteurianum.Can J Microbiol, 23, 947–953.

Davis SE, Morton SA. (2008). Investigation of ionic liquids for the separation of butanol and water.Sep Sci Technol, 43, 2460–2472.

Dhamole PB, Wang Z, Liu Y, Wang B, Feng H. (2012). Extractive fermentation with non-ionic surfactants to enhance butanol production.Biomass Bioenerg, 40, 112–119.

Dong H, Tao W, Zhang Y, Li Y. (2012). Development of an anhydrotetracycline-inducible gene expression system for solvent-producingClostridium acetobutylicum: a useful tool for strain engineering.Metab Eng, 14, 59–67.

Dow chemical company. (2002). N-butanol product information. Form no. 327–00014–

1001.

D¨urre P. (1998). New insights and novel developments in clostridial acetone/

butanol/isopropanol fermentation.Appl Microbiol Biotechnol, 49, 639–648.

D¨urre P. (2007). Biobutanol: an attractive biofuel.Biotechnol J, 2, 1525–1534.

ethanolproducer.com (2012). Available at: http://www.ethanolproducer.com/articles/8578/

target-for-transformation (Last accessed: 1/12/2014).

Eastman press release (2011). Available at: http://www.eastman.com/company/news_center/

2011/pages/eastman_acquires_tetravitae_bioscience_assets.aspx (Last accessed:

1/12/2014).

Ezeji TC, Qureshi N, Blaschek HP. (2004). Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping.Appl Microbiol Biotechnol, 63, 653–658.

Ezeji TC, Karcher PM, Qureshi N, Blaschek HP. (2005). Improving performance of a gas stripping-based recovery system to remove butanol fromClostridium beijerinckiifermen- tation.Bioprocess Biosyst Eng, 27, 207–214.

Ezeji T, Qureshi N, Blaschek HP. (2007a). Butanol production from agricultural residues:

impact of degradation products onClostridium beijerinckiigrowth and butanol fermenta- tion.Biotechnol Bioeng, 97, 1460–1469.

Ezeji T, Qureshi N, Blaschek HP. (2007b). Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn andClostridium beijerinckii.Process Biochem, 42, 34–39.

Ezeji TC, Qureshi N, Blaschek HP. (2007c). Bioproduction of butanol from biomass: from genes to bioreactors.Curr Opin Biotechnol, 18, 220–227.

Ezeji T, Milne C, Price ND, Blaschek HP. (2010). Achievements and perspectives to over- come the poor solvent resistance in acetone and butanol-producing microorganisms.Appl Microbiol Biotechnol, 85, 1697–1712.

Fitz A. (1876). ¨Uber die g¨ahrung des glycerins.Ber Dtsch Chem Ges, 9, 1348–1352.

Fontaine L, Meynial-Salles I, Girbal L, Yang XH, Croux C, Soucaille P. (2002). Molecular char- acterization and transcriptional analysis ofadhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cul- tures ofClostridium acetobutylicumATCC 824.J Bacteriol, 184, 821–830.

Gabriel CL. (1928). Butanol fermentation process.Ind Eng Chem, 20, 1063–1067.

Garza E, Zhao JF, Wang YZ, Wang JH, Iverson A, Manow R, Finan C, Zhou SD. (2012). Engi- neering a homobutanol fermentation pathway inEscherichia coliEG03.J Ind Microbiol Biotechnol, 39, 1101–1107.

Geng QH, Park CH. (1993). Controlled-pH batch butanol-acetone fermentation by low acid producingClostridium acetobutylicumB18.Biotechnol Lett, 15, 421–426.

Gottwald M, Gottschalk G. (1985). The internal pH ofClostridium acetobutylicumand its effect on the shift from acid to solvent formation.Arch Microbiol, 143, 42–46.

Green Biologics press release. (2012). Available at: http://www.greenbiologics.com/pr- butylfuel.php (Last accessed: 1/12/2014).

Green EM. (2011). Fermentative production of butanol—the industrial perspective.Curr Opin Biotechnol, 22, 337–343.

Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN. (1996).

Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicumATCC 824.Microbiology, 142, 2079–2086.

Grimmler C, Held C, Liebl W, Ehrenreich A. (2010). Transcriptional analysis of catabolite repression inClostridium acetobutylicumgrowing on mixtures of D-glucose and D-xylose.

J Biotechnol, 150, 315–323.

Grimmler C, Janssen H, Krausse D, Fischer RJ, Bahl H, Drre P, Liebl W, Ehrenreich A.

(2011). Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures ofClostridium acetobutylicum.J Mol Microbiol Biotechnol, 20, 1–15.

Han B, Gopalan V, Ezeji TC. (2011). Acetone production in solventogenicClostridiumspecies:

new insights from non-enzymatic decarboxylation of acetoacetate.Appl Microbiol Biotech- nol, 91, 565–576.

Hartmanis MG. (1987). Butyrate kinase fromClostridium acetobutylicum.J Biol Chem, 262, 617–621.

Hartmanis MGN, Gatenbeck S. (1984). Intermediary metabolism in Clostridium aceto- butylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol, 47, 1277–1283.

Haus S, Jabbari S, Millat T, Janssen H, Fischer R-J, Bahl H, King J, Wolkenhauer O. (2011).

A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production byClostridium acetobutylicumin continuous culture.BMC Syst Biol, 5, 10.

Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP. (2007). The ClosTron: a universal gene knock-out system for the genusClostridium.J Microbiol Methods, 70, 452–464.

Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP. (2010).

The ClosTron: mutagenesis inClostridiumrefined and streamlined.J Microbiol Methods, 80, 49–55.

Hobson PN, Nasr H. (1951). An amylopectin-type polysaccharide synthesised from sucrose byClostridium butyricum.J Chem Soc, 407, 1855–1857.

H¨onicke D, Janssen H, Grimmler C, Ehrenreich A, L¨utke-Eversloh T. (2012). Global tran- scriptional changes ofClostridium acetobutylicumcultures with increased butanol:acetone ratios.New Biotech, 29, 485–493.

Hu SY, Zheng HJ, Gu Y, Zhao JB, Zhang WW, Yang YL, Wang SY, Zhao GP, Yang S, Jiang WH. (2011). Comparative genomic and transcriptomic analysis revealed genetic character- istics related to solvent formation and xylose utilization inClostridium acetobutylicumEA 2018.BMC Genomics, 12. doi: 10.1186/1471-2164-12-93.

Yukawa H. (2008). Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.Appl Microbiol Biotechnol, 77, 1305-16.

Janssen H, Doring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ. (2010). A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicumin a chemostat culture.Appl Microbiol Biotechnol, 87, 2209–

2226.

Janssen H, Grimmler C, Ehrenreich A, Bahl H, Fischer R-J. (2012). A transcriptional study of acidogenic chemostat cells ofClostridium acetobutylicum—solvent stress caused by a transient n-butanol pulse.J Biotechnol, 161, 354–365.

Jia KZ, Zhang YP, Li Y. (2012). Identification and characterization of two functionally unknown genes involved in butanol tolerance ofClostridium acetobutylicum.PLoS One, 7, e38815.

Jiang Y, Xu CM, Dong F, Yang YL, Jiang WH, Yang S. (2009). Disruption of the acetoacetate decarboxylase gene in solvent-producingClostridium acetobutylicumincreases the butanol ratio.Metab Eng, 11, 284–291.

Jones DT, Woods DR. (1986). Acetone-butanol fermentation revisited. Microbiological Reviews, 50, 484–524.

Jones DT, van der Westhuizen A, Long S, Allcock ER, Reid SJ, Woods DR. (1982). Sol- vent production and morphological changes inClostridium acetobutylicum.Appl Environ Microbiol, 43, 1434–1439.

Jones SW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET. (2008). The transcriptional program underlying the physiology of clostridial sporulation.Genome Biol, 9, R114.

Jones SW, Tracy BP, Gaida SM, Papoutsakis ET. (2011). Inactivation ofбF inClostridium acetobutylicumATCC 824 blocks sporulation prior to asymmetric division and abolishes

бEandбGprotein expression but does not block solvent formation.J Bacteriol, 193, 2429–

2440.

Keis S, Sullivan JT, Jones DT. (2001). Physical and genetic map of theClostridium saccha- robutylicum(formerlyClostridium acetobutylicum) NCP 262 chromosome.Microbiology, 147, 1909–1922.

Killeffer DH. (1927). Butanol and acetone from corn-a description of the fermentation process.

Industrial & Engineering Chemistry, 19, 46–50.

Kirschner M, (2006). n-Butanol. Chemical Market Reporter, January 30–February 5, ABI/INFORM Global 42.

K¨opke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, D¨urre P. (2010).Clostridium ljungdahliirepresents a microbial production platform based on syngas.Proc Natl Acad Sci U S A, 107, 13087–13092.

Krulwich TA, Sachs G, Padan E. (2011). Molecular aspects of bacterial pH sensing and homeostasis.Nat Rev Microbiol, 9, 330–343.

Kuit W, Minton N, L´opez-Contreras A, Eggink G. (2012). Disruption of the acetate kinase (ack) gene ofClostridium acetobutylicumresults in delayed acetate production.Appl Microbiol Biotechnol, 94, 729–741.

Kumar M, Gayen K. (2011). Developments in biobutanol production: new insights. Appl Energy, 88, 1999–2012.

Lan EI, Liao JC. (2011). Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide.Metab Eng, 13, 353–363.

Lan EI, Liao JC. (2012). ATP drives direct photosynthetic production of 1-butanol in cyanobac- teria.Proc Natl Acad Sci U S A, 109, 6018–6023.

Lee J, Yun H, Feist AM, Palsson BO, Lee SY. (2008). Genome-scale reconstruction and in silicoanalysis of theClostridium acetobutylicumATCC 824 metabolic network.Appl Microbiol Biotechnol, 80, 849–862.

Lee J, Jang Y-S, Choi SJ, Im JA, Song H, Cho JH, Seung DY, Papoutsakis ET, Bennett GN, Lee SY. (2012). Metabolic engineering ofClostridium acetobutylicumATCC 824 for isopropanol-butanol-ethanol fermentation.Appl Environ Microbiol, 78, 1416–1423.

Lehmann D, L¨utke-Eversloh T. (2011). SwitchingClostridium acetobutylicumto an ethanol producer by disruption of the butyrate/butanol fermentative pathway.Metab Eng, 13, 464–

473.

Lehmann D, H¨onicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, L¨utke-Eversloh T. (2012a). Modifying the product pattern ofClostridium acetobutylicum.Appl Microbiol Biotechnol, 94, 743–754.

Lehmann D, Radomski N, L¨utke-Eversloh T. (2012b). New insights into the butyric acid metabolism ofClostridium acetobutylicum.Appl Microbiol Biotechnol, 96, 1325–

1339.

Li SY, Srivastava R, Suib SL, Li Y, Parnas RS. (2011). Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control.Bioresour Technol, 102, 4241–4250.

Lin YL, Blaschek HP. (1983). Butanol production by a butanol-tolerant strain ofClostridium acetobutylicumin extruded corn broth.Appl Environ Microbiol, 45, 966–973.

Lopez-Contreras AM, Martens AA, Szijarto N, Mooibroek H, Claassen PAM, van der Oost J, de Vos WM. (2003). Production byClostridium acetobutylicumATCC 824 of CelG, a cellulosomal glycoside hydrolase belonging to family 9.Appl Environ Microbiol, 69, 869–877.

L¨utke-Eversloh T, Bahl H. (2011). Metabolic engineering ofClostridium acetobutylicum:

recent advances to improve butanol production.Curr Opin Biotechnol, 22, 634–647.

Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y. (2010). Proteome reference map and comparative proteomic analysis between a wild typeClostridium ace- tobutylicumDSM 1731 and its mutant with enhanced butanol tolerance and butanol yield.

J Proteome Res, 9, 3046–3061.

Mao SM, Luo YM, Bao GH, Zhang YP, Li Y, Ma YH. (2011). Comparative analysis on the membrane proteome ofClostridium acetobutylicumwild type strain and its butanol-tolerant mutant.Mol Biosyst, 7, 1660–1677.

Mariano AP, de Angelis DdF, Maugeri Filho F, Atala DIP, Wolf Maciel MR, Maciel Filho R. (2008). An alternative process for butanol production: continuous flash fermentation.

Chemical Product and Process Modeling, 3, 1934–2659.

Mariano AP, Qureshi N, Maciel R, Ezeji TC. (2011). Bioproduction of butanol in bioreactors:

new insights from simultaneous in situ butanol recovery to eliminate product toxicity.

Biotechnol Bioeng, 108, 1757–1765.

Mascal M. (2012). Chemicals from biobutanol: technologies and markets.Biofuels Bioprod Biorefining, 6, 483–493.

McAnulty M, Yen J, Freedman B, Senger R. (2012). Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolismin silico.BMC Syst Biol, 6, 42.

Mehta RN, Chakraborty M, Mahanta P, Parikh PA. (2010). Evaluation of fuel properties of butanol-biodiesel-diesel blends and their impact on engine performance and emissions.Ind Eng Chem Res, 49, 7660–7665.

Mermelstein LD, Papoutsakis ET. (1993). In vivo methylation inEscherichia coliby the Bacillus subtilisphageφ3T I methyltransferase to protect plasmids from restriction upon transformation ofClostridium acetobutylicumATCC 824. Appl Environ Microbiol, 59, 1077–1081.

Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET. (1992). Expression of cloned homologous fermentative genes inClostridium acetobutylicumATCC 824.Bio-Technology, 10, 190–195.

militaryaerospace.com (2012). Available at: http://www.militaryaerospace.com/articles/

2012/03/renewable_bio_n-butanoljetfuelbeingproducedbycobaltandnavalairwa.html (Last accessed: 1/12/2014).

Milne C, Eddy J, Raju R, Ardekani S, Kim P-J, Senger R, Jin Y-S, Blaschek H, Price N.

(2011). Metabolic network reconstruction and genome-scale model of butanol-producing strainClostridium beijerinckiiNCIMB 8052.BMC Syst Biol, 5, 130.

Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ. (2009). Engineering alternative butanol production platforms in heterologous bacteria.Metab Eng, 11, 262–

273.

Nishio N, Biebl H, Meiners M. (1983). Effect of pH on the production of acetone and butanol byClostridium acetobutylicumin a minimum medium.J Ferment Technol, 61, 101–104.

Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng QD, Gibson R, Lee HM, Dubois J, Qiu DY, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR. (2001). Genome sequence and comparative analysis of the solvent-producing bacteriumClostridium acetobutylicum.J Bacteriol, 183, 4823–4838.

NYTimes (2012). Available at: http://www.nytimes.com/2012/01/02/business/energy-environ ment/after-three-decades-federal-tax-credit-for-ethanol-expires.html (Last accessed: 1/12/

2014).

Ounine K, Petitdemange H, Raval G, Gay R. (1985). Regulation and butanol inhibition of D-xylose and D-glucose uptake inClostridium acetobutylicum.Appl Environ Microbiol, 49, 874–878.

Papoutsakis ET. (2008). Engineering solventogenic clostridia.Curr Opin Biotechnol, 19, 420–

429.

Paredes CJ, Alsaker KV, Papoutsakis ET. (2005). A comparative genomic view of clostridial sporulation and physiology.Nat Rev Microbiol, 3, 969–978.

Pasteur L. (1861). Animacules infusoires vivant sans oxyg`ene libre et d´eterminant des fermen- tations.C R Hebd S´eances Acad Sci, 52, 344–347.

Peralta-Yahya PP, Keasling JD. (2010). Advanced biofuel production in microbes.Biotechnol J, 5, 147–162.

Petersen DJ, Bennett GN. (1990). Purification of acetoacetate decarboxylase fromClostrid- ium acetobutylicumATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli.Appl Environ Microbiol, 56, 3491–3498.

Phillips JA, Humphrey AE. (1983). An overview of process technology for the production of liquid fuels and chemical feedstocks via fermentation. In: Wise DL, editor.Organic Chemicals from Biomass. Menlo Park, CA: Benjamins/Cummings Publishing, pp. 249–

304.

Pich A, Narberhaus F, Bahl H. (1990). Induction of heat-shock proteins during initiation of solvent formation inClostridium acetobutylicum.Appl Microbiol Biotechnol, 33, 697–704.

Qureshi N, Blaschek HP. (2001). ABE production from corn: a recent economic evaluation.J Ind Microbiol Biotechnol, 27, 292–297.

Qureshi N, Sahaa BC, Hector RE, Hughes SR, Cotta MA. (2008). Butanol production from wheat straw by simultaneous saccharification and fermentation usingClostridium beijer- inckii: Part I-batch fermentation.Biomass Bioenerg, 32, 168–175.

Rakopoulos DC, Rakopoulos CD, Giakoumis EG, Dimaratos AM, Kyritsis DC. (2010). Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine.Energy Conv Manag, 51, 1989–1997.

Ranganathan S, Maranas CD. (2010). Microbial 1-butanol production: identification of non- native production routes andin silicoengineering interventions.Biotechnol J, 5, 716–725.

Ren C, Gu Y, Hu SY, Wu Y, Wang P, Yang YL, Yang C, Yang S, Jiang WH. (2010).

Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization inClostridium acetobutylicum.Metab Eng, 12, 446–454.

Ren C, Gu Y, Wu Y, Zhang W, Yang C, Yang S, Jiang W. (2012). Pleiotropic functions of catabolite control protein CcpA in butanol-producingClostridium acetobutylicum.BMC Genomics, 13, 349.

Reysenbach AL, Ravenscroft N, Long S, Jones DT, Woods DR. (1986). Characterization, biosynthesis, and regulation of granulose in Clostridium acetobutylicum. Appl Environ Microbiol, 52, 185–190.

Ross D. (1961). The acetone-butanol fermentation.Prog Ind Microbiol, 3, 73–85.

Ruhl J, Schmid A, Blank LM. (2009). SelectedPseudomonas putidastrains able to grow in the presence of high butanol concentrations.Appl Environ Microbiol, 75, 4653–4656.

Một phần của tài liệu Bioprocessing of renewable resources to commodity bioproducts (Trang 261 - 276)

Tải bản đầy đủ (PDF)

(573 trang)