Bio-based succinic acid is a very promising compound which can be used in many different application fields and has the potential to substitute several petroleum-based bulk chemicals. Research within the past years led to the devel- opment of a number of different production strains, fermentation strategies, and downstream processes suitable for industrial needs. Based on these results, sev- eral companies started bio-succinic acid production at industrial scale. The short overview of these companies given above, which is certainly not complete, and
the press releases of the last few years show that the market is very dynamic and fast growing (http://www.icis.com/Articles/2012/01/30/9527521/chemical-industry- awaits-for-bio-succinic-acid-potential.html). Therefore, bio-succinic acid has the potential to become an important component of a sustainable petroleum-independent chemistry in the near future.
The production costs (plus profit) for bio-succinic acid have been estimated to be in the range 1.1–1.6 € per kilogram of succinic acid (dependent on the sugar price) for an annual production of 100,000 tons without telling details about the recovery (Hermann and Patel, 2007). The decision on the best succinate production process with respect to economical and environmental parameters needs an evaluation of all steps involved. Product formation under acidic as well as neutral pH conditions suffers from the challenges described above and can be regarded as a trade-off between production performance and compatibility with subsequent downstream processing procedures to obtain a product of sufficient quality. The current situation indicates that different production processes for succinic acid, succinate salts, or succinate derivatives using different production hosts and different pH values for fermentation are economically viable. A view on industrial succinate production processes running in 5–10 years will give a more conclusive answer on which processes are the most favorable ones.
REFERENCES
Agarwal L, Isar J, Meghwanshi GK, Saxena RK. (2006). A cost effective fermentative produc- tion of succinic acid from cane molasses and corn steep liquor byEscherichia coli.J Appl Microbiol, 100, 1348–1354.
Andersson C, Hodge D, Berglund KA, Rova U. (2007). Effect of different carbon sources on the production of succinic acid using metabolically engineeredEscherichia coli.Biotechnol Prog, 23, 381–388.
Barrett E, Stanton C, Zelder O, Fitzgerald G, Ross RP. (2004). Heterologous expression of lactose- and galactose-utilizing pathways from lactic acid bacteria inCorynebacterium glutamicumfor production of lysine in whey.Appl Environ Microbiol, 70, 2861–2866.
Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A. (2008). Succinic acid: a new platform chemical for biobased polymers from renewable resources.Chem Eng Technol, 31, 647–654.
Becker J, Wittmann C. (2012). Bio-based production of chemicals, materials and fuels—
Corynebacterium glutamicumas versatile cell factory.Curr Opin Biotechnol, 23, 631–640.
Berglund KA, Yedur S, Dunuwila DD. (1999). Succinic acid production and purification. US Patent 5,958,744.
Berovic M, Legisa M. (2007). Citric acid production.Biotechnol Annu Rev, 13, 303–343.
Binder S, Schendzielorz G, St¨abler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. (2012).
A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level.Genome Biol, 13.
Blankschien MD, Clomburg JM, Gonzalez R. (2010). Metabolic engineering ofEscherichia colifor the production of succinate from glycerol.Metab Eng, 12, 409–419.
Blombach B, Seibold GM. (2010). Carbohydrate metabolism inCorynebacterium glutam- icumand applications for the metabolic engineering of L-lysine production strains.Appl Microbiol Biotechnol, 86, 1313–1322.
Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ. (2011).
Corynebacterium glutamicumtailored for efficient isobutanol production.Appl Environ Microbiol, 77, 3300–3310.
Borges ER, Pereira N Jr. (2011). Succinic acid production from sugarcane bagasse hemi- cellulose hydrolysate byActinobacillus succinogenes. J Ind Microbiol Biotechnol, 38, 1001–1011.
Bott M. (2007). Offering surprises: TCA cycle regulation inCorynebacterium glutamicum.
Trends Microbiol, 15, 417–425.
Bott M, Thauer RK. (1989). The active species of CO2formed by carbon monoxide dehydro- genase fromPeptostreptococcus productus.Z Naturforsch C, 44, 392–396.
Bozell JJ, Petersen GR. (2010). Technology development for the production of biobased prod- ucts from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited.
Green Chem, 12, 539–554.
Burkovski A, editor. (2008).Corynebacteria: Genomics and Molecular Biology. Norfolk:
Caister Academic Press.
Chatterjee R, Millard CS, Champion K, Clark DP, Donnelly MI. (2001). Mutation of theptsG gene results in increased production of succinate in fermentation of glucose byEscherichia coli.Appl Environ Microbiol, 67, 148–154.
Chen K, Jiang M, Wei P, Yao J, Wu H. (2010). Succinic acid production from acid hydrolysate of corn fiber byActinobacillus succinogenes.Appl Biochem Biotechnol, 160, 477–485.
Chen KQ, Li J, Ma JF, Jiang M, Wei P, Liu ZM, Ying HJ. (2011). Succinic acid production by Actinobacillus succinogenesusing hydrolysates of spent yeast cells and corn fiber.
Bioresource Technol, 102, 1704–1708.
Cheng KK, Zhao XB, Zeng J, Wu RC, Xu YZ, Liu DH, Zhang JA. (2012). Downstream processing of biotechnological produced succinic acid.Appl Microbiol Biotechnol, 95, 841–850.
Cooper TG, Tchen TT, Wood HG, Benedict CR. (1968). The carboxylation of phospho- enolpyruvate and pyruvate. I. The active species of “CO2” utilized by phosphoenolpyruvate carboxykinase, carboxytransphosphorylase, and pyruvate carboxylase.J Biol Chem, 243, 3857–3863.
Cukalovic A, Stevens CV. (2008). Feasibility of production methods for succinic acid deriva- tives: a marriage of renewable resources and chemical technology.Biofuels Bioprod Bioref, 2, 505–529.
da Silva GP, Mack M, Contiero J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology.Biotechnol Adv, 27, 30–39.
Datta R. (1992). Process for the purification of succinic acid by anaerobic fermentation. US Patent 5,143,833.
Datta R, Glassner DA, Jain MK, Vicky Roy JR. (1992). Fermentation and purification process for succinic acid. US Patent 5,168,055.
Dharmadi Y, Murarka A, Gonzalez R. (2006). Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering.Biotechnol Bioeng, 94, 821–
829.
Dominguez H, Nezondet C, Lindley ND, Cocaign M. (1993). Modified carbon flux during oxygen limited growth ofCorynebacterium glutamicumand the consequences for amino acid overproduction.Biotechnol Lett, 15, 449–454.
Dong X, Quinn PJ, Wang X. (2011). Metabolic engineering ofEscherichia coliandCorynebac- terium glutamicumfor the production of L-threonine.Biotechnol Adv, 29, 11–23.
Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW. (1998). A novel fermentation pathway in anEscherichia colimutant producing succinic acid, acetic acid, and ethanol.
Appl Biochem Biotechnol, 70–72, 187–198.
Dorado MP, Lin SK, Koutinas A, Du C, Wang R, Webb C. (2009). Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid.
J Biotechnol, 143, 51–59.
Eggeling L, Bott M, editors. (2005).Handbook of Corynebacterium glutamicum. Boca Raton, FL: CRC Press.
Ensign SA. (2006). Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation.Mol Microbiol, 61, 274–276.
Fukui K, Koseki C, Yamamoto Y, Nakamura J, Sasahara A, Yuji R, Hashiguchi K, Usuda Y, Matsui K, Kojima H, Abe K. (2011). Identification of succinate exporter inCorynebac- terium glutamicumand its physiological roles under anaerobic conditions.J Biotechnol, 154, 25–34.
Gerigk MR, Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R. (2002).
Enhanced pilot-scale fed-batch L-phenylalanine production with recombinantEscherichia coliby fully integrated reactive extraction.Bioprocess Biosyst Eng, 25, 43–52.
Glassner DA, Datta R. (1992). Process for the production and purification of succinic acid. US Patent 5,143,834.
Guettler MV, Jain MK, Rumler D. (1996). Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 5,573,931.
Guettler MV, Rumler D, Jain MK. (1999). Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen.Int J Syst Bacteriol, 49, 207–216.
Harada H, Misawa N. (2012). Novel approach in the biosynthesis of functional carotenoids in Escherichia coli.Methods Mol Biol, 892, 133–141.
Hermann BG, Patel M. (2007). Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology: a techno-economic analysis.Appl Biochem Biotechnol, 136, 361–388.
Hong SH, Lee SY. (2001). Metabolic flux analysis for succinic acid production by recombinant Escherichia coliwith amplified malic enzyme activity.Biotechnol Bioeng, 74, 89–95.
Hong SH, Lee SY. (2002). Importance of redox balance on the production of succinic acid by metabolically engineeredEscherichia coli.Appl Microbiol Biotechnol, 58, 286–290.
Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ. (2004).
The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens.
Nat Biotechnol, 22, 1275–1281.
Huhn S, Jolkver E, Kr¨amer R, Marin K. (2011). Identification of the membrane protein SucE and its role in succinate transport inCorynebacterium glutamicum.Appl Microbiol Biotechnol, 89, 327–335.
Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. (2004). Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.J Biol Chem, 279, 49138–49150.
Ikeda M, Nakagawa S. (2003). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol, 62, 99–
109.
Inui M, Murakami S, Okino S, Kawaguchi H, Vert`es A, Yukawa H. (2004a). Metabolic analysis ofCorynebacterium glutamicumduring lactate and succinate productions under oxygen deprivation conditions.J Mol Microbiol Biotechnol, 7, 182–196.
Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H. (2004b). Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions.J Mol Microbiol Biotechnol, 8, 243–254.
Jana S, Deb JK. (2005). Strategies for efficient production of heterologous proteins in Escherichia coli.Appl Microbiol Biotechnol, 67, 289–298.
Jang YS, Jung YR, Lee SY, Kim JM, Lee JW, Oh DB, Kang HA, Kwon O, Jang SH, Song H, Lee SJ, Kang KY. (2007). Construction and characterization of shuttle vectors for succinic acid-producing rumen bacteria.Appl Environ Microbiol, 73, 5411–5420.
Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO.
(2008a). Combining metabolic engineering and metabolic evolution to develop nonrecom- binant strains ofEscherichia coliC that produce succinate and malate.Biotechnol Bioeng, 99, 1140–1153.
Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. (2008b). Elim- inating side products and increasing succinate yields in engineered strains ofEscherichia coliC.Biotechnol Bioeng, 101, 881–893.
Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO. (2010). Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology.J Biomed Biotechnol, 2010, 761042.
Jiang M, Chen K, Liu Z, Wei P, Ying H, Chang H. (2010). Succinic acid production by Actinobacillus succinogenesusing spent brewer’s yeast hydrolysate as a nitrogen source.
Appl Biochem Biotechnol, 160, 244–254.
Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, et al. (2003). The completeCorynebacterium glutamicumATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins.J Biotechnol, 104, 5–25.
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H. (2006). Engineering of a xylose metabolic pathway inCorynebacterium glutamicum.Appl Environ Microbiol, 72, 3418–
3428.
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. (2008). Engineering of an L-arabinose metabolic pathway inCorynebacterium glutamicum.Appl Microbiol Biotechnol, 77, 1053–
1062.
Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN. (2004a). Batch and continuous fermentation of succinic acid from wood hydrolysate byMannheimia succiniciproducens MBEL55E.Enzyme Microb Technol, 35, 648–653.
Kim P, Laivenieks M, McKinlay J, Vieille C, Gregory Zeikus J. (2004b). Construction of a shuttle vector for the overexpression of recombinant proteins inActinobacillus succino- genes.Plasmid, 51, 108–115.
Kim P, Laivenieks M, Vieille C, Zeikus JG. (2004c). Effect of overexpression ofActinobacillus succinogenesphosphoenolpyruvate carboxykinase on succinate production inEscherichia coli.Appl Environ Microbiol, 70, 1238–1241.
Kim JM, Lee KH, Lee SY. (2008). Development of a markerless gene knock-out system for Mannheimia succiniciproducensusing a temperature-sensitive plasmid.FEMS Microbiol Lett, 278, 78–85.
Kirchner O, Tauch A. (2003). Tools for genetic engineering in the amino acid-producing bacteriumCorynebacterium glutamicum.J Biotechnol, 104, 287–299.
Kuhnert P, Scholten E, Haefner S, Mayor D, Frey J. (2010).Basfia succiniciproducensgen.
nov., sp. nov., a new member of the familyPasteurellaceaeisolated from bovine rumen.
Int J Syst Evol Microbiol, 60, 44–50.
Kurzrock T, Weuster-Botz D. (2010). Recovery of succinic acid from fermentation broth.
Biotechnol Lett, 32, 331–339.
Lee JW, Lee SY. (2010). Proteome-based physiological analysis of the metabolically engi- neered succinic acid producerMannheimia succiniciproducensLPK7.Bioprocess Biosyst Eng, 33, 97–107.
Lee PC, Lee WG, Kwon S, Lee SY, Chang HN. (1999). Succinic acid production byAnaero- biospirillum succiniciproducens: effects of the H2/CO2supply and glucose concentration.
Enzyme Microb Technol, 24, 549–554.
Lee PC, Lee WG, Kwon S, Lee SY, Chang HN. (2000). Batch and continuous cultivation ofAnaerobiospirillum succiniciproducensfor the production of succinic acid from whey.
Appl Microbiol Biotechnol, 54, 23–27.
Lee PC, Lee WG, Lee SY, Chang HN. (2001). Succinic acid production with reduced by- product formation in the fermentation ofAnaerobiospirillum succiniciproducens using glycerol as a carbon source.Biotechnol Bioeng, 72, 41–48.
Lee PC, Lee SY, Hong SH, Chang HN. (2002). Isolation and characterization of a new suc- cinic acid-producing bacterium,Mannheimia succiniciproducensMBEL55E, from bovine rumen.Appl Microbiol Biotechnol, 58, 663–668.
Lee PC, Lee SY, Hong SH, Chang HN. (2003a). Batch and continuous cultures ofMannheimia succiniciproducensMBEL55E for the production of succinic acid from whey and corn steep liquor.Bioprocess Biosyst Eng, 26, 63–67.
Lee PC, Lee SY, Hong SH, Chang HN, Park SC. (2003b). Biological conversion of wood hydrolysate to succinic acid byAnaerobiospirillum succiniciproducens.Biotechnol Lett, 25, 111–114.
Lee SJ, Song H, Lee SY. (2006). Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol, 72, 1939–
1948.
Lee SY, Kim JM, Song H, Lee JW, Kim TY, Jang YS. (2008). From genome sequence to integrated bioprocess for succinic acid production byMannheimia succiniciproducens.
Appl Microbiol Biotechnol, 79, 11–22.
Lee JW, Choi S, Kim JM, Lee SY. (2010a).Mannheimia succiniciproducensphosphotrans- ferase system for sucrose utilization.Appl Environ Microbiol, 76, 1699–1703.
Lee PC, Lee SY, Chang HN. (2010b). Kinetic study on succinic acid and acetic acid formation during continuous cultures ofAnaerobiospirillum succiniciproducensgrown on glycerol.
Bioprocess Biosyst Eng, 33, 465–471.
Lin H, Bennett G, San K. (2005a). Genetic reconstruction of the aerobic central metabolism in Escherichia colifor the absolute aerobic production of succinate.Biotechnol Bioeng, 89, 148–156.
Lin H, Bennett GN, San KY. (2005b). Fed-batch culture of a metabolically engineered Escherichia colistrain designed for high-level succinate production and yield under aerobic conditions.Biotechnol Bioeng, 90, 775–779.
Lin H, Bennett GN, San KY. (2005c). Metabolic engineering of aerobic succinate production systems inEscherichia colito improve process productivity and achieve the maximum theoretical succinate yield.Metab Eng, 7, 116–127.
Lin H, San KY, Bennett GN. (2005d). Effect ofSorghum vulgarephosphoenolpyruvate car- boxylase andLactococcus lactispyruvate carboxylase coexpression on succinate produc- tion in mutant strains ofEscherichia coli.Appl Microbiol Biotechnol, 67, 515–523.
Litsanov B, Brocker M, Bott M. (2012a). Toward homosuccinate fermentation: metabolic engineering ofCorynebacterium glutamicumfor anaerobic production of succinate from glucose and formate.Appl Environ Microbiol, 78, 3325–3337.
Litsanov B, Kabus A, Brocker M, Bott M. (2012b). Efficient aerobic succinate production from glucose in minimal medium withCorynebacterium glutamicum.Microb Biotechnol, 5, 116–128.
Litsanov B, Brocker M, Bott M. (2013). Glycerol as a substrate for aerobic succinate production in minimal medium withCorynebacterium glutamicum.Microb Biotechnol, 6, 189–195.
Liu YP, Zheng P, Sun ZH, Ni Y, Dong JJ, Zhu LL. (2008). Economical succinic acid production from cane molasses byActinobacillus succinogenes.Bioresource Technol, 99, 1736–1742.
Lopez-Garzon CS, Ottens M, van der Wielen LAM, Straathof AJJ. (2012). Direct downstream catalysis: from succinate to its diethyl ester without intermediate acidification.Chem Eng J, 200, 637–644.
Maass D, Gerigk MR, Kreutzer A, Weuster-Botz D, Wubbolts M, Takors R. (2002). Integrated L-phenylalanine separation in anE. colifed-batch process: from laboratory to pilot scale.
Bioprocess Biosyst Eng, 25, 85–96.
McKinlay JB, Vieille C. (2008).13C-metabolic flux analysis ofActinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations.Metab Eng, 10, 55–68.
McKinlay JB, Zeikus JG, Vieille C. (2005). Insights intoActinobacillus succinogenesfermen- tative metabolism in a chemically defined growth medium.Appl Environ Microbiol, 71, 6651–6656.
McKinlay JB, Vieille C, Zeikus JG. (2007). Prospects for a bio-based succinate industry.Appl Microbiol Biotechnol, 76, 727–740.
McKinlay JB, Laivenieks M, Schindler BD, McKinlay AA, Siddaramappa S, Challacombe JF, Lowry SR, Clum A, Lapidus AL, Burkhart KB, Harkins V, Vieille C. (2010). A genomic perspective on the potential ofActinobacillus succinogenesfor industrial succinate production.BMC Genomics, 11, 680.
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. (2013). Accel- erated pentose utilization byCorynebacterium glutamicumfor accelerated production of lysine, glutamate, ornithine and putrescine.Microb Biotechnol, 6, 131–140.
Meynial-Salles I, Dorotyn S, Soucaille P. (2008). A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity.Biotechnol Bioeng, 99, 129–135.
Mimitsuka T, Sawai H, Hatsu M, Yamada K. (2007). Metabolic engineering ofCorynebac- terium glutamicumfor cadaverine fermentation.Biosci Biotechnol Biochem, 71, 2130–
2135.
Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R. (2008). Fermentative utilization of glycerol byEscherichia coliand its implications for the production of fuels and chemicals.Appl Environ Microbiol, 74, 1124–1235.
Mustafi N, Gr¨unberger A, Kohlheyer D, Bott M, Frunzke J. (2012). The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids.Metab Eng, 14, 449–457.
Nicolaou SA, Gaida SM, Papoutsakis ET. (2010). A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation.Metab Eng, 12, 307–331.
Nishimura T, Vertes AA, Shinoda Y, Inui M, Yukawa H. (2007). Anaerobic growth of Corynebacterium glutamicumusing nitrate as a terminal electron acceptor.Appl Micro- biol Biotechnol, 75, 889–897.
Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H. (2008). An efficient succinic acid production process in a metabolically engineeredCorynebacterium glutamicumstrain.Appl Microbiol Biotechnol, 81, 459–464.
Pai RA, Doherty MF, Malone MF. (2002). Design of reactive extraction systems for bioproduct recovery.AIChE Journal, 48, 514–526.
Pines O, Even-Ram S, Elnathan N, Battat E, Aharonov O, Gibson D, Goldberg I. (1996).
The cytosolic pathway of L-malic acid synthesis inSaccharomyces cerevisiae: the role of fumarase.Appl Microbiol Biotechnol, 46, 393–399.
Raab AM, Lang C. (2011). Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae.Bioeng Bugs, 2, 120–123.
Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C. (2010). Metabolic engineering ofSaccharomyces cerevisiaefor the biotechnological production of succinic acid.Metab Eng, 12, 518–525.
Rifkin GD, Opdyke JE. (1981). Anaerobiospirillum succiniciproducenssepticemia. J Clin Microbiol, 13, 811–813.
Rittmann D, Lindner SN, Wendisch VF. (2008). Engineering of a glycerol utilization pathway for amino acid production byCorynebacterium glutamicum.Appl Environ Microbiol, 74, 6216–6222.
R¨uffer N, Heidersdorf U, Kretzers I, Sprenger GA, Raeven L, Takors R. (2004). Fully inte- grated L-phenylalanine separation and concentration using reactive-extraction with liquid- liquid centrifuges in a fed-batch process withE. coli.Bioprocess Biosyst Eng, 26, 239–
248.
Samuelov NS, Lamed R, Lowe S, Zeikus JG. (1991). Influence of CO2-HCO3−levels and pH on growth, succinate production, and enzyme activities ofAnaerobiospirillum succinicipro- ducens.Appl Environ Microbiol, 57, 3013–3019.
Samuelov NS, Datta R, Jain MK, Zeikus JG. (1999). Whey fermentation byAnaerobiospirillum succiniciproducensfor production of a succinate-based animal feed additive.Appl Environ Microbiol, 65, 2260–2263.
Sanchez AM, Bennett GN, San KY. (2005a). Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in anEscherichia colialcohol dehydroge- nase and lactate dehydrogenase mutant.Biotechnol Prog, 21, 358–365.
Sanchez AM, Bennett GN, San KY. (2005b). Novel pathway engineering design of the anaer- obic central metabolic pathway inEscherichia colito increase succinate yield and produc- tivity.Metab Eng, 7, 229–239.
Sasaki M, Jojima T, Inui M, Yukawa H. (2008). Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinantCorynebacterium glutamicum under oxygen- deprived conditions.Appl Microbiol Biotechnol, 81, 691–699.
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H. (2009). Engineering of pentose transport inCorynebacterium glutamicumto improve simultaneous utilization of mixed sugars.Appl Microbiol Biotechnol, 85, 105–115.
Sauer U, Eikmanns BJ. (2005). The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.FEMS Microbiol Rev, 29, 765–794.
Scholten E, D¨agele D. (2008). Succinic acid production by a newly isolated bacterium.Biotech- nol Lett, 30, 2143–2146.
Scholten E, Renz T, Thomas J. (2009). Continuous cultivation approach for fermentative succinic acid production from crude glycerol byBasfia succiniciproducensDD1.Biotechnol Lett, 31, 1947–1951.
Smith KM, Cho KM, Liao JC. (2010). EngineeringCorynebacterium glutamicumfor isobu- tanol production.Appl Microbiol Biotechnol, 87, 1045–1055.
Song H, Kim TY, Choi BK, Choi SJ, Nielsen LK, Chang HN, Lee SY. (2008). Development of chemically defined medium forMannheimia succiniciproducensbased on its genome sequence.Appl Microbiol Biotechnol, 79(2), 263–272.
Sprenger GA. (2007). From scratch to value: engineeringEscherichia coliwild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate.Appl Microbiol Biotechnol, 75, 739–749.
St¨abler N, Oikawa T, Bott M, Eggeling L. (2011).Corynebacterium glutamicumas a host for synthesis and export of D-amino acids.J Bacteriol, 193, 1702–1709.
Stols L, Kulkarni G, Harris BG, Donnelly MI. (1997). Expression ofAscaris suummalic enzyme in a mutantEscherichia coliallows production of succinic acid from glucose.Appl Biochem Biotechnol, 63–65, 153–158.
Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M. (2007). Anaerobic growth and potential for amino acid production by nitrate respiration inCorynebacterium glutamicum.
Appl Microbiol Biotechnol, 75, 1173–1182.
Thakker C, Martinez I, San KY, Bennett GN. (2012). Succinate production inEscherichia coli.Biotechnol J, 7, 213–224.
Uhde A, Youn JW, Maeda T, Clermont L, Matano C, Kramer R, Wendisch VF, Seibold GM, Marin K. (2013). Glucosamine as carbon source for amino acid-producingCorynebacterium glutamicum.Appl Microbiol Biotechnol, 97, 1679–1687.
van der Werf MJ, Guettler MV, Jain MK, Zeikus JG. (1997). Environmental and physio- logical factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z.Arch Microbiol, 167, 332–342.
Vemuri GN, Eiteman MA, Altman E. (2002). Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains ofEscherichia coli.Appl Environ Microbiol, 68, 1715–1727.
Verhoff FH. (2012). Citric acid. In:Ullmann’s Encyclopedia of Industrial Chemistry. Wein- heim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 197–202.
Vickroy TB. (1985). Lactic acid. In: Blanch HW, Drew S, Wang DIC, editors.Comprehensive Biotechnology. New York: Pergamon Press, pp. 761–776.
Wada M, Takagi H. (2006). Metabolic pathways and biotechnological production of L-cysteine.
Appl Microbiol Biotechnol, 73, 48–54.