Limitations and the future research directions

Một phần của tài liệu The impact of shared data expediting digital transformation for improved operations and supply (Trang 47 - 59)

CHAPTER 6: CONCLUSION, LIMITATIONS, AND FUTURE RESEARCH DIRECTIONS

6.2. Limitations and the future research directions

This work has various limitations that should be taken into consideration for future research, even if it makes significant scientific and practical contributions when compared to numerous earlier studies and debates. Firstly, as the primary research technique used in this study was quantitative methods, it will be important to think about utilizing a wider variety of research methods in the future in order to take advantage of

multidimensional information on the research topic. Secondly, the study concentrates on small and medium-sized businesses in emerging nations, particularly Vietnam. As a result, further study across a wide range of economies is required to fully understand the implications of various policy options. Furthermore, research can be carried out in a particular subject to produce in-depth findings in that field. At last, in order to provide comparisons between organizations, future research may take into account various business sizes.

References

Aleksander, I. (2017), “Partners of humans: a realistic assessment of the role of robots in the foreseeable future”, Journal of Information Technology, Vol. 32, No. 1, pp. 1 - 9, https://doi.org/10.1057/s41265-016-003

Alzoubi, H., & Yanamandra, R. (2020), “Investigating the mediating role of information sharing strategy on agile supply chain”, Uncertain Supply Chain

Management, Vol. 8 No. 2, pp. 273-284,

http://dx.doi.org/10.5267/j. uscm.2019.12.004

Asamoah, D., Agyei-Owusu, B., Andoh-Baidoo, F. K., & Ayaburi, E. (2021), “Inter- organizational systems use and supply chain performance: Mediating role of supply chain management capabilities”, International journal of information

management. Vol. 58, pp. 102195,

https://doi.org/10.1016/j.ijinfomgt.2020.102195

Bag, s., Rahman, M. s., Srivastava, G., Giannakis, M., & Foropon, c. (2023), “Data- driven digital transformation and the implications for antifragility in the humanitarian supply chain”, International Journal of Production Economics, Vol.

266, pp. 109059, https://doi.Org/10.1016/j.ijpe.2023.109059

Bayraktar, E., Tatoglu, E., Aydiner, A. s., & Deien, D. (2023), “Business analytics adoption and technological intensity: An efficiency analysis”, Information Systems Frontiers, pp. 1-18, https://doi.org/10.1007/s 10796-023-10424-3

Carvalho, H., Azevedo, s. G., & Cruz-Machado, V. (2012), “Agile and resilient approaches to supply chain management: influence on performance and competitiveness”, Logistics research, Vol. 4, pp. 49-62, https://doi.org/10.1007/s 12159-012-0064-2

Chen, D. Q., Preston, D. s., & Swink, M. (2021), “How big data analytics affects supply chain decision-making: An empirical analysis”, Journal of the Association for Information Systems, Vol. 22 No. 5, pp. 1224-1244, DOI: 10.17705/ljais.007I3 Di Vaio, A., Hassan, R., & Alavoine, c. (2022), “Data intelligence and analytics: A

bibliometric analysis of human-Artificial intelligence in public sector decision-

making effectiveness”, Technological Forecasting and Social Change, Vol. 174, pp. 121201, https://doi.Org/l0.1016/j.techfore.2021 ■ 121201

Ding, Y., Jin, M., Li, s., & Feng, D. (2021), “Smart logistics based on the internet of things technology: an overview”, International Journal of Logistics Research and Applications, Vol. 24 No. 4, pp. 323-345,

https://d0i.0rg/l 0.1080/13675567.2020.1757053

Dubey, R., Altay, N., Gunasekaran, A., Biome, c., Papadopoulos, T., & Childe, s. J.

(2018), “Supply chain agility, adaptability and alignment: empirical evidence from the Indian auto components industry”, International Journal of Operations

& Production Management, Vol. 38 No. 1, pp. 129-148, https://doi.org/10.1108/IJOPM-04-2016-0173

Evjemo, L. D., Gjerstad, T., Grotli, E. I., & Sziebig, G. (2020), “Trends in smart manufacturing: Role of humans and industrial robots in smart factories”, Current Robotics Reports, Vol.l, pp. 35-41, https://d0i.0rg/l0.1007/s43154-020-00006-5 Falk, R. F., & Miller, N. B. (1992), “A primer for soft modeling”, University of Akron

Press.

Fan, c., Zhang, c., Yahja, A., & Mostafavi, A. (2021), “Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. International journal of information management, Vol. 56, pp.

102049, https://doi.org/10,1016/j,ijinfomgt.2019.102049

Feng, B., & Ye, Q. (2021), “Operations management of smart logistics: A literature review and future research”, Frontiers of Engineering Management, Vol. 8, pp.

344-355, https://doi.org/10.1007/s42524-021 -0156-2

Firouzi, F., Farahani, B., Daneshmand, M., Grise, K., Song, J., Saracco, R.,... & Luo, A. (2021), “Harnessing the power of smart and connected health to tackle

COVID-19: loT, AI, robotics, and blockchain for a better world”, IEEE Internet of Things Journal, Vol. 8 No. 16, pp. 12826-12846,

https://doi.org/10.1109/J1OT.2021.3073904

Fornell, c., & Larcker, D. F. (1981), “Evaluating structural equation models with unobservable variables and measurement error’, Journal of marketing research, Vol. 18 No. 1, pp. 39-50, https://doi.org/10.1177/002224378101800104 Frederico, G. F., Garza-Reyes, J. A., Kumar, A., & Kumar, V. (2021), “Performance

measurement for supply chains in the Industry 4.0 era: a balanced scorecard approach”, International journal of productivity and performance management. Vol. 70 No. 4, pp. 789-807, https://doi.org/10.1108/IJPPM-08- 2019-0400

Fuller, C.M., Simmering, M.J., Aline, G., Atinc, Y. and Babin, B.J. (2016), “Common methods variance detection in business research”, Journal of Business Research, Vol. 69 No. 8, pp. 3192-3198, https://doi.Org/10.l016/j.jbusres.2015.12.008

Gõkalp, E., & Martinez, V. (2021), “Digital transformation capability maturity model enabling the assessment of industrial manufacturers”, Computers in Industry, Vol.

132, pp. 103522, https://doi.org/10,1016/j.compind.2021.103522

Gawankar, s. A., Gunasckaran, A., & Kamblc, s. (2020), “A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context”, International journal of production research, Vol. 58 5, pp. 1574-1593,

https://doi.Org/l 0.1080/00207543.2019.1668070

Gayialis, s. p., Kechagias, E. p., & Konstantakopoulos, G. D. (2022), “A city logistics system for freight transportation: Integrating information technology and operational research”, Operational Research, Vol. 22 No. 5, pp. 5953-5982, https://doi.org/10,1007/s 12351 -022-00695-0

Gong, J., Chang, T. H., Shen, c., & Chen, X. (2018), “Flight time minimization of UAV for data collection over wireless sensor networks”, IEEE Journal on Selected Areas in Communications, Vo\. 36 No. 9, pp. 1942-1954,

https://doi.org/10.1109/JSAC.20I8.286442Q

Hair, J. F., LDS Gabriel, M., Silva, D. D., & Braga, s. (2019), “Development and validation of attitudes measurement scales: fundamental and practical

aspects^, RA ƠSP Management Journal, Voi. 54, pp. 490-507, https://doi.org/10.1108/RAUSP-05-2019-0098

Hair, J.F. Jr., Hull, G.T.M., Ringle, C.M. and Sarstedt, M. (2014), “A Primer on Partial Least Squares Structural Equation Modeling, (1st ed.)”, Sage Publications, Thousand Oaks, CA.

Harfouche, A. L., Nakhle, F., Harfouche, A. H., Sardella, o. G., Dart, E., & Jacobson, D.

(2023), “A primer on artificial intelligence in plant digital phenomics: embarking on the data to insights journey”, Trends in Plant Science, Vol. 28 No. 2, pp. 154­

184. https://doi.Org/10.1016/j.tplants.2022.08.021

Hcinzl, H., & Mittlbổck, M. (2003), “Pseudo R-squarcd measures for Poisson regression models with over-or underdispersion”, Computational statistics & data analysis, Vo\ 44 No. 1-2, pp. 253-271, https://doi.org/10,1016/SO167- 9473(03)00062-8

Henseler, J., Ringle, C.M. and Sarstedt, M. (2016), "Testing measurement invariance of composites using partial least squares", International Marketing Review, Vol. 33 No. 3, pp. 405-431, https://doi.org/10.1108/IMR-09-2014-0304

Jain, N., Tomar, A., & Jana, p. K. (2021), “A novel scheme for employee churn problem using multi-attribute decision making approach and machine learning”, Journal of Intelligent Information Systems, Vol. 56, pp. 279-302, https://doi.org/10.1007/s 10844-020-00614-9

Janssen, M., Brous, p., Estevez, E., Barbosa, L. s., & Janowski, T. (2020), "Data governance: Organizing data for trustworthy Artificial Intelligence”, Government Information Quarterly, Voi. 37 No.3, pp. 101493, https://doi .org/10,1016/j .giq.2020.101493

Jiao, J., Zhou, F., Gebraeel, N. z., & Duffy, V. (2020), “Towards augmenting cyber­

physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments”, International Journal of Production Research, Voi. 58 No. 16, pp. 5089-5111, https://doi.Org/l 0,1080/00207543.2020.1722324

Kamble, s. s., Gunasekaran, A., Ghadge, A., & Raut, R. (2020), “A performance measurement system for industry 4.0 enabled smart manufacturing system in SMMEs-A review and empirical investigation”, International journal of production economics, Vol. 229, pp. 107853,

https://doi.Org/10.1016/j.iipe.2020.107853

Koot, M., Mes, M. R., & lacob, M. E. (2021). A systematic literature review of supply chain decision making supported by the Internet of Things and Big Data Analytics.

Computers & Industrial Engineering, 154, 107076.

Kostakis, p., & Kargas, A. (2021), “Big-Data Management: A Driver for Digital Transformation?”, Information, Vol. 12 No. 10, pp. 411, https://doi.org/10.3390/info 12100411

Lazaroiu, G., Andronie, M., latagan, M., Geamănu, M., Stefanescu, R., & Dijmarescu, I.

(2022), “Deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big data management algorithms in the internet of manufacturing things”, ISPRS International Journal of Geo-Information, Vol. 11 No. 5, pp. 277, https://doi.org/10.3390/ijgillQ50277

Lc, T. T. (2023), “How do food supply chain performance measures contribute to sustainable corporate performance during disruptions from the COVID-19 pandemic emergency?”, International Journal of Quality & Reliability

Management, Vol. 40 No. 5, pp. 123 3-125 8, https://doi.org/10.1108/lJQRM-03- 2022-0089

Lee, K., Romzi, p., Hanaysha, J., Alzoubi, H., & Alshuridch, M. (2022), “Investigating the impact of benefits and challenges of 1OT adoption on supply chain performance and organizational performance: An empirical study in Malaysia”, Uncertain Supply Chain Management,Voi. 10 No. 2, pp. 537-550, http://dx.doi.Org/10.5267/j.uscm.2021.11.009

Li, s., Wang, R., Zheng, p., & Wang, L. (2021), “Towards proactive human-robot collaboration: A foreseeable cognitive manufacturing paradigm”, Journal of Manufacturing Systems, Vol. 60, pp. 547-552, https://doi.Org/l 0,1016/j.jmsy.2O21.07.017

Li, X., Wang, Y., & Chen, X. (2012), “Cold chain logistics system based on cloud computing”, Concurrency and Computation: Practice and Experience, Vol. 24 No. 17, pp. 213 8-2150, https://doi.Org/l0.1002/cpe. 1840

Liu, Q., Trevisan, A. H., Yang, M., & Mascarenhas, J. (2022), “A framework of digital technologies for the circular economy: Digital functions and mechanisms”, Business Strategy and the Environment, Vol. 31 No. 5, pp. 2171­

2192, https://doi.org/10.1002/bse.3015

Liu, w., Shanthikumar, J. G., Lee, p. T. w., Li, X., & Zhou, L. (2021), “Special issue editorial: Smart supply chains and intelligent logistics services”, Transportation Research Part E: Logistics and Transportation Review, Vo\. 147, pp. 102256, https://doi.org/10.1016/j.tre.2O21.102256

Marjanovic, o., Ariyachandra, T., & Dinter, B. (2022), “Looking Ahead: Business Intelligence & Analytics Research in the Post-Pandemic New Normal”, http://hdl.handle.net/IO125/8OO85

Mihailovic, A., Kapidani, N., Luksic, z., Tournier, R., Vella, G., Moulzouris, M., ... &

Paladin, z. (2022), “Planning a Case for Shared Data Retrieval across the European Maritime Common Information Sharing Environment”, International Conference on Information Technology (IT), pp. 1-6, https://doi.org/10.1109/lT54280.2022.9743531

Narayanan, u., Paul, V., & Joseph, s. (2022), “A novel system architecture for secure authentication and data sharing in cloud enabled Big Data Environment”, Journal of King Saud University-Computer and Information Sciences, Vol. 34 No. 6, pp.

3121-3135, https://doi.Org/l0.1016/jJksuci■ 2020.05.005

Niu, Y., Ying, L., Yang, J., Bao, M., & Sivaparthipan, c. B. (2021), “Organizational business intelligence and decision making using big data analytics”, Information Processing & Management,'Vo}. 58 No. 6, pp. 102725, https://doi.Org/10.1016/j.ipm.2021.102725

Nunnally, J. (1994), “Psychometric theory”.

Oliff, H., Liu, Y., Kumar, M., Williams, M., & Ryan, M. (2020), “Reinforcement learning for facilitating human-robot-interaction in manufacturing”, Journal of

Manufacturing Systems, Vol. 56, pp. 326-340, https://doi.Org/10.1016/j.jmsv.2020.06.018

Pereira, V., Narayanamurthy, G., Ishizaka, A., & Yassine, N. (2021), “Decision making in logistics management in the era of disruptive technologies”, The International Journal of Logistics Management, Vol. 32 No. 2, pp. 305-319.

Puica, E. (2023), “Improving Supply Chain Management by Integrating RFID with loT Shared Database: Proposing a System Architecture”, IFIP International Conference on Artificial Intelligence Applications and Innovations, pp. 159-170, https://doi.org/10.1007/978-3-031-341Q7-6 13

Qiao, H., Chen, J., & Huang, X. (2021), “A survey of brain-inspired intelligent robots:

Integration of vision, decision, motion control, and musculoskeletal systems”, IEEE Transactions on Cybernetics, Vol. 52 No. 10, pp. 11267-11280, https://doi.org/10.1109/TC YB .2021.3071312

Rejeb, A., Keogh, J. G., Simske, s. J., Stafford, T., & Treiblmaier, H. (2021), “Potentials of blockchain technologies for supply chain collaboration: a conceptual framework”, The International Journal of Logistics Management, Vol. 32 No. 3, pp. 973-994, https://doi.org/10.1108/IJLM-02-2020-0Q98

Rey, R., Corzetto, M., Cobano, J. A., Merino, L., & Caballero, F. (2019), “Human-robot co-working system for warehouse automation”, IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 578-585, https://doi.Org/l 0.1109/ETFA .2019.8869178

Ribeiro, J., Lima, R., Eckhardt, T., & Paiva, s. (2021), “Robotic process automation and artificial intelligence in industry 4.0-a literature review”, Procedia Computer Science, Vol. 181, pp. 51 -58, https://doi.Org/10,1016/j.procs.2021.01.104

Richey Jr, R. G., Morgan, T. R., Lindsey-Hall, K., & Adams, F. G. (2016), “A global exploration of big data in the supply chain”, International Journal of Physical Distribution & Logistics Management,No\. 46 No. 8, pp. 710-739, https://doi.org/10.1108/1JPDLM-05-2016-0134

Sayogo, D. s., Zhang, J., Luna-Reyes, L., Jarman, H., Tayi, G., Andersen, D. L., ... &

Andersen, D. F. (2015), “Challenges and requirements for developing data architecture supporting integration of sustainable supply chains”, information Technology and Management, Vol. 16, pp. 5-18, https://doi.org/10.1007/s 10799­

014-0203-3

Singh, R. K., Luthra, s., Mangla, s. K., & Uniyal, s. (2019), “Applications of information and communication technology for sustainable growth of SMEs in India food industry”, Resources, Conservation and Recycling, Vol. 147, pp. 10-18, https://doi.org/10.1016/j.resconrec.2019.04.014

Sestino, A., Kahlawi, A. and De Mauro, A. (2023), "Decoding the data economy:

a literature review of its impact on business, society and digital transformation", European Journal of Innovation Management, https://doi.org/10.ll08/EJIM-Ql-2023-0078

Shu, B., Sziebig, G., & Pieskã, s. (2018), “Human-robot collaboration: Task sharing through virtual reality”, Annual Conference of the IEEE Industrial Electronics Society, pp. 6040-6044, https://doi.Org/10.l 109/IECON.2018.8591102

Spanaki, K., Karafili, E., & Dcspoudi, s. (2021), “AI applications of data sharing in agriculture 4.0: A framework for role-based data access control”, International Journal of Information Management, Vol. 59, pp. 102350, https://doi.Org/l 0.1016/j.ijinfomgt.2021.102350

Tao, F., Zhang, H., Liu, A., & Nee, A. Y. (2018), “Digital twin in industry: State-of-the- art”, IEEE Transactions on industrial informatics, Vol. 15 No. 4, pp. 2405-2415, https://doi.Org/l 0,1109/TII.2018.2873186

Teece, D. J. (2000), “Strategies for managing knowledge assets: the role of firm structure and industrial context”, Long range planning, Vol. 33, No. I, pp. 35-54, https://d0i.0rg/l 0.1016/S0024-6301 (99)00117-X

Tiejun, p. (2012), “Value chain analysis method of smart logistics using fuzzy theory”, Information Technology Journal, Vol. 11 No. 4, pp. 441.

Tenenhaus, M., Amato, s., & Esposito Vinzi, V. (2004), “A global goodness-of-fit index for PLS structural equation modelling”, Proceedings of the XL/Ị SIS scientific meeting, Vol. 1, No. 2, pp. 739-742.

Trunk, A., Birkel, H., & Hartmann, E. (2020), “On the current state of combining human and artificial intelligence for strategic organizational decision making”, Business Research, Vol. 13 No. 3, pp. 875-9191, https://doi.org/10.1007/s40685-02Q- 00133-x

Tsang, Y. p., Wu, c. H., Lam, H. Y., Choy, K. L., & Ho, G. T. (2021), “Integrating Internet of Things and multi-temperature delivery planning for perishable food E­

commerce logistics: A model and application”, International Journal of Production Research, Vol. 59 No. 5, pp. 1534-1556, https://doi.Org/l 0.1 ()8()/()0207543.2()20.1841315

Uckelmann, D. (2008), “A definition approach to smart logistics”, International Conference on Next Generation Wired/Wireless Networking, pp. 273-284, https://doi.org/10.1007/978-3-540-85500-2 28

Wang, Y., Su, M., Shen, L., & Tang, R. (2021), “Decision-making of closed-loop supply chain under Corporate Social Responsibility and fairness concerns”, Journal of Cleaner Production, Vol. 284, pp. 125373,

https://doi.Org/10.1016/j.jclepro.2020.125373

Wetzels, M., Odekerken-Schrỏdcr, G., & Van Oppen, c. (2009), “Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration”, MIS quarterly, pp. 177-195, https://doi.org/10.2307/2065Q284

Wu, c., Wu, p., Wang, J., Jiang, R., Chen, M., & Wang, X. (2021), “Critical review of data-driven decision-making in bridge operation and maintenance”, Structure and infrastructure engineering, V(A. 18 No. 1, pp. 47-70, https://doi.org/10.108Q/15732479.2020.1833946

Yang, F., Qiao, Y., Abedin, M. z., & Huang, c. (2022), “Privacy-preserved credit data sharing integrating blockchain and federated learning for industrial 4.0”, IEEE Transactions on Industrial Informatics, Vo\. 18 No. 12, pp. 8755-8764, https://doi.org/10.1109/TIL2022.3151917

Yau, Y., Hinault, T., Taylor, M„ Cisek, p„ Fellows, L. K., & Dagher, A. (2021),

“Evidence and urgency related EEG signals during dynamic decision-making in humans”, Journal of Neuroscience, Vo\. 41 No. 26, pp. 5711-5722, DOI:

https://doi.org/10.1523/JNEUROSCI.2551 -20.2021

Yu, z., Yan, H., & Edwin Cheng, T. c. (2001), “Benefits of information sharing with supply chain partnerships", Industrial management & Data systems. Vol. 101, No.

3, pp. 114-121, https://doi.Org/10.l 108/02635570110386625

Van Meeteren, M., Trincado-Munoz, F., Rubin, T. H., & Vorley, T. (2022), “Rethinking the digital transformation in knowledge-intensive services: A technology space analysis", Technological Forecasting and Social Change, Vol. 179, pp. 121631, https://doi.org/10.1108/E JIM-01 -2023-0078

Một phần của tài liệu The impact of shared data expediting digital transformation for improved operations and supply (Trang 47 - 59)

Tải bản đầy đủ (PDF)

(71 trang)