However, the thermal energy at 300 K is much less than the bond energy of H , so we would expect it to remain intact at 2room temperature... 42.7 the spacing between adjacent vibrational
Trang 142.1: a)
K)J1038.1(3
)eVJ1060.1)(
eV109.7(23
22
3
23
19 4
)eVJ1060.1()eV48.4(2
temperature will be more than enough to break up He2 However, the thermal energy at
300 K is much less than the bond energy of H , so we would expect it to remain intact at 2room temperature
42.2: a) 5.0eV
4
1 2 0
b) 5.0eV(4.3eV3.5eV)4.2eV
42.3: Let 1 refer to C and 2 to O.
nm1128.0,kg10656.2,
kg10993
0 2 1
m r
)carbon(nm0484.0
0 2 1
m r
b) 2 1.45 10 46kg m2;
2 2
2
1
42.4: The energy of the emitted photon is 1.0110 5eV, and so its frequency and wavelength are
GHz44.2)
sJ1063.6(
)eVJ1060.1)(
eV1001.1(
34
19 5
.m123.0Hz)1044.2(
)sm1000.3(
This frequency corresponds to that given for a microwave oven
Trang 242.5: a) From Example 42.2,
2 46
23
1 0.479meV7.67410 JandI 1.44910 kgm
E
srad1003.12
m8.49)srad1003.1)(
m100484.0
)J10083.2(22
gives2
26 2
r
0 max
2 max r
v m E
b) According the Eq 42.7 the spacing between adjacent vibrational energy levels
is twice the ground state energy:
,)2
1(
E E
ω n
E
n n
eV2690.0(
)sJ1063.6(
T
c) The vibrational period is shorter than the rotational period
Trang 342.7: a) 2
H Li
H Li 2
m m
m m r
m
I
eV
1053.7J1020.1
mkg1069.3
)sJ10054.1(4
4))13()3()14(4(2
mkg1069
3
)kg1067.1kg1017.1(
)m1059.1)(
kg1067.1)(
kg1017
1
(
3 21
2 47
2 34
2 2
3 4
2 47
27 26
2 10 27
E E
J1020.1
s)m1000.3)(
sJ1063.6(
21
8 34
E I
l l E I
l l
2 2
2 2 2
1
2
)(
22
)1(,
2
)1
E h
E
f
22
Trang 442.11: Energy levels are
I l
l ω n
E E
2)1(2
592
4
)eVJ10602.1)(
eV2700.0(
)sm10998.2)(
sJ10626.6(λ
eV2700.0)eV10395.2)(
4()eV2690.0)(
1(
6
19
8 34
b) n0,l 2n1,l 1:
m10627
4
λ
)eVJ10602.1)(
eV2680.0(
)sm10998.2)(
sJ10626.6(λ
eV2680.0)eV10395.2)(
4()eV2690.0)(
1(
6
19
8 34
c) n0,l 3n1,l2:
m
10634.4)eVJ10602.1)(
eV2676.0(
)sm10998.2)(
sJ10626.6(
λ
eV2676.0)eV10395.2)(
6()eV2690.0)(
1(
6 19
8 34
used
Trang 5)]
Hz1024.1(2)[
kg1015.3()kg1067.1(
22
26 27
2 14 26
27
2 1
2 2 1 2 r
m m
πf m m πf
m k
3
eV513
0
J1022.8Hz1024.1sJ1063
sm1000.3
42.14: a) As a photon,
eVJ1060.1eV1020.6
sm1000.3sJ1063.6
λ
19 31
λ
19 27
m1049.4
kg105.89kg1082.3
3 3
3 29
26 26
Cl Na
Trang 642.16: For an average spacing a, the density is ρm a3, where m is the average of the
ionic masses, and so
3 3
25 26
)mkg1075.2(
2kg1033.1kg1049
)sm1000.3()sJ1063.6(λ
13 13
8 34
So the number of electrons that can be excited to the conduction band is
eV12.1
eV1034
42.19: a) To be detected the photon must have enough energy to bridge the gap width
sm1000.3sJ1063.6
19
8 34
42.20: 3 1.17 105 m s
theorem does not hold for the electrons at the Fermi energy Although these electrons are very energetic, they cannot lose energy, unlike electrons in a free electron gas
Trang 742.21: a) Eψ
z
ψ y
ψ x
2 2
2 2
πy n L
πx n A
ψ sin x sin y sin z
π n x
2 2
2 2
2
2
mL
π n n n E
Eψ ψ L
π n L
π n L
π n m
z y x
z y
2
31
mL
π E n
and the degeneracy is 2 3 6
The second excited state 2 22
2
92
,2,1or2,1,2or1,2,2
πz n dy
L
πy n dx
L
πx n A
Trang 8
1
eVJ1060.1Jstates10
5
9
s)J10054.1(2
)eVJ101.60(eV)5.0)(
m101.0(kg))10
9.11(2(2
2
22
19 40
3 34 2
2 19
2 3
6 2
31
2 3 2 2
g
E π
V m
E
g
42.24: Equation (42.13) may be solved for n mE 2 L π
rs 2 , and substituting this into Eq (42.12), using L3 V , gives Eq (42.14)
42.25: Eq.(42.13): 2
2 2 2 rs
2mL
π n
.103.4
)eVJ1060.1()eV7.0()kg109.11(2)sJ101.054(
010.02
7 rs
19 31
34 rs
L n
eVJ101.601.942
KJ1038.1
eVJ1060.1eV23
kT π
K300KJ1038.1
23 2
F 2
K
molJ194.00233
KmolJ
c) Mostly ions (see Section 18.4)
Trang 942.28: a) See Example 42.10: The probabilities are 1.7810 7,2.3710 6, and
f F 1 (see Problem (42.46)), and so the probability that a state at the top
of the valence band is occupied is the same as the probability that a state of the bottom of the conduction band is filled (this result depends on having the Fermi energy in the middle of the gap)
1lnK300KJ1038.1
1
1ln
20 F
4
23 F
E
E E
E f kT E E
So the Fermi level is 0.20 eV below the conduction band
42.30: a) Solving Eq (42.23) for the voltage as a function of current,
.V0645.01mA3.60
mA40.0ln1
I e
Trang 102 19
A1025.9
580 0
h E
mC10
c) q e0.78
d)
0590
C104.9m101.6
mC10
10 30
e q d
p q
Trang 1142.34: The electrical potential energy is U 5.13eV, and
m
108.24
42.35: a) For maximum separation of Na andCl for stability:
.m106.9)J102.40(4
)C101.60(
J10.402eVJ101.60eV3.6eV5.14
10 19
0
2 19
19 19
0 2
r πε
e U
b) For K andBr:
.m108.1J)1028.1(4
)C101.60(
J10.281eVJ101.60eV3.5eV4.34
9 19
0
2 19
19 19
0 2
r πε
e U
42.36: The energies corresponding to the observed wavelengths are 3.2910 21J,
.J101.65andJ1006.2,J1047.2,
Trang 1242.37: a) Pr (44.36) yields I 2.7110 47 kgm2, and so
Cl H
Cl H r
)(
m m
m m I m
)kg105.81kg101.67(
)kg105.81kg101.67()mkg102.71(
10
26 27
26 27
2 47
1
2 2
I
l l l l
l I E l
hc E
m1084.4:m1004.6
;5:m1064.9λ
6:m1004.8λ
;7:m1090.6λ
4 5
5 5
l l
c) The longest wavelength means the least transition energy (l 1l 0)
m
1085.4λ
J1010.4mkg1071.2
s)J10054.1()1(
4
22 2
47
2 34
d) If the hydrogen atom is replaced by deuterium, then the reduced mass changes
m
188)95.1()m4.96(λ:45
m
156)95.1()m4.80(λ:56
m
134)95.1()m0.69(λ:67
m
118)95.1()m4.60(λ:78
forSo
λ)95.1(λkg01.62
kg1016.3λλ
22
λλ
27 27
r r
2 2
μ μ
l l
μ μ
l l
μ μ
l l
μ μ
l l
μ μ
l l
m m
l
r m πc l
I πc hc
Trang 1342.38: From the result of Problem (42.9), the moment inertia of the molecule is
2 46
2
2
mkg1043.64
hl E
r
m I r
Trang 1442.39: a)
2
)1(2
2 2
I
l l I
L
E ex
),0(
E g
and there is an additional multiplicative factor of 2l + 1 because for each l state there are
really2l 1 m l states with the same energy
0
2
)12
b) T 300K,I 1.44910 46kgm2
)mkg10449.1(2
)11()1
2 46
J1067.7
)12()2(
23 2
5(
.5)1
2
(
0556 0 0
2
)110()10(
23 2
2
)120()20(
23 2
41(
.41
Trang 1542.40: a) 1.44910 46 kgm2.
co
I
.0E
J
1067.7)mkg10449.1(2
)11()1()sJ10054.12
)1(
0
23 2
46
2 34 2
.eV1079.4J1067
J1067.7(
s)m1000.3()sJ1063.6(
23
8 34
(a))
part(fromJ1067.7
J
102.76K)(20K)J1038.1(
23
22 23
kT
Therefore, although T is quite small, there is still plenty of energy to excite CO molecules
into the first rotational level This allows astronomers to detect the 2.59 mm wavelength radiation from such molecular clouds
Trang 1642.41: a) 2
Cl Na
Cl Na 2
m m
m m r
m I
)kg108068.5kg108176.3(
)m10361.2()kg108068.5()kg108176.3(
26 26
2 10 26
01148.0λ
J10730.1mkg10284.1
s)J10054.1(22)26
2 45
2 34 2
1 2
I E
0
0 1
E E l
cm
297.2λ
J10650
b) Carrying out exactly the same calculation for Na37Cl, where mr(37) 3542 kg
10 26 and I(37)1.31210 45kgm2 we find for
cm
347.2λandJ10465.8:
01
Forcm
173.1λandJ10693.1:
12
l
E l
l
So the differences in wavelength are:
cm
050.0cm2.297cm
347.2λ:01
cm
025.0cm1.148cm
173.1λ:12
l l
42.42: The vibration frequency is, from Eq (42.8), 1.121014
2( 2 r
22
12
1
m
k E
m
k n
)mN2(576)
sJ10054.1(2
Trang 1742.44: a) The frequency is proportional to the reciprocal of the square root of the
reduced mass, and in terms of the atomic masses, the frequency of the isotope with the deuterium atom is
.)(
1
)(
1)
(
)
H F
D F 0
2
F D D F
F H H F
0
m m
m m f
m m m m
m m m m f f
Using f0from Exercise (42.13) and the given masses, f 8.991013Hz
I H
2 I H 2
r m m r m I
2
1024
r 2
2:since
2
12
)1(
2
12
)1(
m
k πf ω hf
n I l l
m
k h
I l l
.1093.6Hz1096.3
sm1000.3
2λ
.2
12
32)02(
6
13 11
8 2
2 2
I
c hf
I
hc E
hc
hf I
hf I
sm1000.3
22λ
2)26(
6 13
11
8 2
hf I E
iii) n2,l 2n1,l 3
.m1040.4Hz1093.6)Hz1096.3(3
sm1000.3
23λ
2)126(
6 13
11
8 2
hf I E
Trang 1842.46: The sum of the probabilities is
.1
111
1
11
1)
()(
/
F F
kT E kT
E
kT E kT
E
e
e e
e e
E E f E E f
42.47: Since potassium is a metal we approximate EF EF0
.eV2.03J
1024.3)
kg1011.9(2
)/m1031.1(s)J10054.1(3
melectron10
31.1kg10
49
6
mkg
851
ionconcentratelectron
the
But
23
19 31
3 3 28 2
34 3
3
F
3 28
26 3
3 2 3 3
n π
42.48: a) First we calculate the number-density of neutrons from the given mass-density:
.m102.4)neutronkg
1067.1/)mkg100.7
kg1067.1(2
)m102.4()2sJ1063.6(32
27
3 44 2
34 2
0
F
3 3
3 3 3 3
b) Set kT EF0(see Exercise 42.26) to obtain
.K103.1)KJ1038.1(
)J108.1
28
11 0
42.49: a) Each unit cell has one atom at its center and 8 atoms at its corners that are each
shared by 8 other unit cells So there are 18 82atoms per unit cell
3 28
3
9 4.66 10 atoms m)
m1035.0(
V n
b)
3 2
3 3 F0
π
In this equation N V is the number of free electrons per m3 But the problem says to
assume one free electron per atom, so this is the same as V n calculated in part (a)
kg10109
Trang 19Setting this equal to zero when r givesr0
2 0 7
0
48
αe
πε A
r and so
.8
1
7 0 0
αe U
At r r0,
.eV7.85J
1026.132
0 0
2
r πε
αe U
b) To remove a NaClion pair from the crystal requires 7.85 eV.When neutral
Na and Cl atoms are formed from the Na and Cl atoms there is a net release of energy
eV,1.53eV
35
3
tot
3 2
3 3 0
V
N m
π E
3
.5
3
2
35
332
3 2
3 3 tot
3 2
3 3
2
3 2
3 3 tot
π dV
dE P
V
N m
π
V
N V
N m
π N
atm1076.3Pa1080.3
)m1045.8()kg1011.9(5
)sJ10054.1(3
5 10
3 3 28 31
2 34 3
c) There is a large attractive force on the electrons by the copper ions
Trang 2042.52: a) From Problem (42.51):
.35
5
335
.5
3
2
3 2
3 3
3 2
3 3
p
V
N V
N m
π V
dV
dp V B
V
N m
π p
33
Pa106.33
2 2 2
0
F
3000
23
100
23
)100(
2100
c m π
c m V
N mc
E
.m
1.67
m10
3 33
3 28
c) The number of electrons is 6.03 10
kg101.99
kg)10
1003
3 6 3
N e
d) Comparing this to the result from part (a) 400
m101.67
m106.66
3 33
3 35
Trang 2142.54: a) Following the hint,
dr r
e π r
e π d dr
k
r r
3 0
2
0 2
2
14
1
3 0
k ω
q q π
d r d r
d
11
1111
2 3
0
2 3
2 2
2
4
24
21
4
2
221
1
1
d πε
p r
πε
p r
d d πε
q
U
r
d r r
d r
d r
r
q q πε
U
0
41
.4
24
2
14
22
2224
1111
114
3 0
2 3
0 2
3 2
0
2 3
2
0 2 0 2
r πε
p d
πε
p U
r
d d πε
q r
d r r d πε q
d r d r d r r d πε q
2
r πε
2
r πε p
U