1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Physics exercises_solution: Chapter 28 doc

35 335 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Chapter 28
Trường học University of Science
Chuyên ngành Physics
Thể loại Bài tập
Định dạng
Số trang 35
Dung lượng 475,55 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

28.11: a At the point exactly midway between the wires, the two magnetic fields are in opposite directions and cancel... 28.12: The total magnetic field is the vector sum of the constan

Trang 1

28.1: For a charge with velocity v(8.00106 m s ˆj, the magnetic field produced at

a position r away from the particle is ˆ

r

.ˆˆ

)T101.92(

ˆ)

m0.50(

)sm108.0)(

C10(6.04

ˆ

5 2

6 6

0 2

ˆˆˆˆ)m0.500

ˆˆˆˆ)m0.500(ˆm0.500

ˆ2

ˆ22

ˆ4

0 0

qv B

B B

page

theintoT,1038.4

)m120.0(

)sm100.9)(

C100.3()

m120.0(

)sm105.4)(

C100.8(4

4

2

6 6

2

6 6

Trang 2

28.3: 0 3

q π

is

T101.31)

m0.500(

)sm106.80)(

C104.80)(

CsN1014

6

6 2

5 6

2 2 7 2

4.62

)m0.7071(

)sm106.80)(

m0.500(C)104.80)(

CsN1014

7 7

3

5 6

2 2 7 3

m)0.500(

)sm106.80)(

C104.80)(

CsN1014

6 6

2

5 6

2 2 7 2

theonforcetheanduppointschargeupper

theonforce(theN10

1.69

)m0.240(

m109.00)(

sm104.50)(

C103.00)(

C108.00()AmT10(4

3

2

6 6

6 6

7 2

CmN108.99

2 12

m) (0.240

C 10 0) (8.00)(3.0 2

charge points up and the force on the lower charge points down)

The ratio of the Coulomb force to the magnetic force is

2

2

v c

10 1.69 N 3.75 3 2.22 10 b) The magnetic forces are reversed when the direction of only one velocity is

reversed but the magnitude of the force is unchanged

Trang 3

28.5: The magnetic field is into the page at the origin, and the magnitude is

page

theintoT,101.64

m)0.400(

)sm108.0)(

C101.5()

m0.300(

)sm102.0)(

C104.0(44

6

2

5 6

2

5 6

0

2 2 0

r

v q r

qv π

μ B B

q q  into the page; 0 2

4πd

v q μ

qv μ B

v v

4π d

v v q μ

0 2

0

2 2

2

)2(4

,)2(

F

F d

πε

q F

d π

v q μ F

C

B C

B

.101.00  6

)m0.500)(

m0.010)(

A125(4ˆm)0.500(4

ˆ

μ r

dl I π

μ r

d I π

μ

.ˆT104.3

 d

Trang 4

28.8: The magnetic field at the given points is:

2 0

2

0 2

0

6 2

0 2

0

6 2

0 2

0

6 2

0 2

0

sin4

.0)0(sin4

sin4

T

102.00)

m0.100(

)m0.000100(

A)200(4

sin4

T.100.705)

m0.100(2

45sin)m0.000100(

A)(2004

sin4

T

102.00)

m0.100(

)m0.000100(

A)200(4

sin4

r

θ dl I π

μ dB

r

dl I π

μ r

θ dl I π

μ dB

π

μ r

θ dl I π

μ dB

π

μ r

θ dl I π

μ dB

π

μ r

θ dl I π

μ dB

3

2)

m100.0(3

)m00100.0(A)200(4

6

2 0

Trang 5

28.9: The wire carries current in the z-direction The magnetic field of a small piece of

d I π

90sinm)105()A00.4(4ˆ

sin4

11 2

4 0

θ dl I π

ˆ)

m00.2(

)90(sinm)105()A00.4(4ˆ

sin4

11

2

4 0

2 0

i

i i

θ dl I π

μ d

2

1ˆˆˆm00.2(ˆm00

1077

1

)

ˆ2

1m)2.00(m)00.2(

m)10(5.0A)00.4(4)

ˆ2

1sin4

11

2 2

4 0

2 0

i j

i j i

j B

θ dl I π

μ d

d) r(2.00m)kˆlˆrˆ0

3

43

8223

12

12

:2

0 0

0

πd

I μ d

π

I μ d

d π

I μ B

3

4 0

 , in the jˆ direction

28.11: a) At the point exactly midway between the wires, the two magnetic fields are in

opposite directions and cancel

b) At a distance a above the top wire, the magnetic fields are in the same

3

2ˆ)3(2

ˆ2

ˆ2

ˆ2

0 0

0 2

0 1

0

a

I a

I a

I r

I r

Trang 6

28.12: The total magnetic field is the vector sum of the constant magnetic field and the

wire’s magnetic field So:

a) At (0, 0, 1 m):

.ˆ)T100.1(

ˆ)m00.1(2

)A00.8(ˆT1050.1(

ˆ2

7 0

6 0

T,102.19ˆT)10(1.6ˆT)1050.1(

ˆ)m00.1(2

)A00.8(ˆT1050.1(

ˆ2

6 6

6

0 6

0 0

θ π

μ πr

I μ

k i

B

k i

k B

B

from x to z.

)m25.0(2

)A00.8(ˆT1050.1(

ˆ2

0 6

0 0

π

μ πr

24

)(

4)

(

0 2

1 2 2 2

0 2 3 2 2

0

a x x

a π

I μ y

x x

y π

Ix μ y

x

xdy π

I μ

μ

π μ

πrB I

πr

I μ B

2m)0.080(

so,2

4 0

πr

I μ

B

4m)160.0

B

m)(5.502

A)800(2

5 0

π

μ πr

I μ

b) Since the magnitude of the earth’s magnetic filed is 5.00105 T, to the north, the total magnetic field is now 30o east of north with a magnitude of 5.78105 T This could be a problem!

Trang 7

28.16: a) B = 0 since the fields are in opposite directions.

a b

I πr

I μ πr

I μ B B

22

2

0 0

T6.67T1067.6

m0.2

1m0.3

12

)A(4.0)ATm04(

θ B θ B B

a

b a

cos2

coscos

0.0(2

)A(4.0)ATm104(2

cos2

2

2 2

7 0

I B

a

,T53.7T1053

Trang 8

28.17: The only place where the magnetic fields of the two wires are in opposite

directions is between the wires, in the plane of the wires

Consider a point a distance x from the wire carrying I = 75.0 A 2 Btot will be zero where B1 B2

A0.75A,

0.25

;)m400.0(

2)m400.0(2

2 1

1 2

2 0 1

x I x I

πx

I μ x π

I μ

x = 0.300 m; Btot 0 along a line 0.300 m from the wire carrying 75.0 A amd 0.100 m from the wire carrying current 25.0 A

b) Let the wire with I1 25.0 A be 0.400 m above the wire with I = 75.0 A 2

The magnetic fields of the two wires are in opposite directions in the plane of the wires and at points above both wires or below both wires But to have B1 B2 must be closer

to wire #1 since I1 < I , so can have 2 Btot 0 only at points above both wires

Consider a point a distance x from the wire carrying I1 25.0 A B will be tot

zero where B1 B2

m200.0);

m400.0(

)m400.0(22

1 2

2 0 1

x I

x π

I μ πx

I μ

0

tot 

B along a line 0.200 m from the wire carrying 25.0 A and 0.600 m from the wire carrying current I2 75.0 A

Trang 9

28.18: (a) and (b) B = 0 since the magnetic fields due to currents at opposite corners of

the square cancel

(c)

left

the toT,100.4

45cosm)

210.0(2

A)(100)ATm104(4

m20.10cm210cm)(10cm)(10

45cos2

445cos4

45cos45

cos45

cos45

cos

4

7

2 2

r

πr

I μ B

B B

B B

B

a

d c

b a

Trang 10

r

I B

T1080.0T,

5 1

0

T1000.2,

T1080.0T,

1000

1

6 3

2 1

4

4 3

2

z

5 z

5 z

5 z

z

z z z

B B B

B

B B

B

B

B B

B

To give B 4 in the  direction the current in wire 4 must be toward the bottom of the page

A0.2)

AmT10(2

T)100.2(m)200.0()2(

rB I

112

2 0

2 0

d

I d

d

I L

On the middle wire, the magnetic fields cancel so the force is zero

42

112

2 0

2 0

d

I d

d

I L

L I Lg

λ22

λ

2 0

2 0

Trang 11

28.22: a) 6.00 10 N,

)m400.0(2

)m20.1()A00.2()A00.5(2

6 0

2 1

repulsive since the currents are in opposite directions

b) Doubling the currents makes the force increase by a factor of four to

.N10

)m0250.0(2)mN100.4(

2

5 1

0 2

2 1

F I r

I I L

F

b) The two wires repel so the currents are in opposite directions

28.24: There is no magnetic field at the center of the loop from the straight sections

The magnetic field from the semicircle is just half that of a complete loop:

,42

2

12

loop

R

I R

I B

28.25: As in Exercise 28.24, there is no contribution from the straight wires, and now we

have two oppositely oriented contributions from the two semicircles:

,2

2

1)

2

R B

28.26: a) The field still points along the positive x-axis, and thus points into the loop

from this location

b) If the current is reversed, the magnetic field is reversed At point P the field would then point into the loop

c) Point the thumb of your right hand in the direction of the magnetic moment, under the given circumstances, the current would appear to flow in the direction that your

fingers curl (i.e., clockwise).

Trang 12

28.27: a) 2.77A

)800()AmT104(

)T0580.0()m024.0(22

so,

aB I

a NI μ

x

b) At the center, B c 0 NI 2a. At a distance x from the center,

m0184.0so,m024.0with ,4

)

(

2

1)(

means

)(

)(

2)

(

2

6 3

2

2

2 2 2

3 2

1

2 2 2

3 2

2 2

3 0

2 2 2

2 0

a a

x

a x

a B

B

a x

a B

a x

a a

NI a

)m020.0(2

)A500.0()600(2

3 0

0

a

NI B

b) From Eq (29-16),

.T1034.1))m020.0()m080.0((

2

)m020.0()A500.0()600()m08.0()

2 0

2 2 2

2 2

2

)(

2)

(

Ia μ

a x x B N a

x

NIa μ x

)m06.0()m06.0()T1039.6(2

2 0

2 2 2

b)  4.0A   (4.0A)5.0310 6Tm

0 1

2 1

I I I

Using Ampere’s Law in each case, the sign of the line integral was determined by using the right-hand rule This determines the sign of the integral for a counterclockwise path

Trang 13

28.32: Consider a coaxial cable where the currents run in OPPOSITE directions.

22

0 0

πr

I μ B I μ πr B I μ d I

I b r

1 0 1

0 1

I μ B I μ r B I μ d I

I b r

πr

I I μ

28.34: Using the formula for the magnetic field of a solenoid:

.T0402.0)

m150.0(

)A00.8()600(0 0

L

NI μ nI μ

B

)A0.12(

)m400.0()T0270.0(0 0

I μ

BL N L

NI μ B

1790turns m

m400.0

turns716

b) The length of wire required is 2rN  2(0.0140 m )(116) 63 m

28.36:

L

N I

B0

N

BL I

)4000)(

ATm104(

)m40.1()T150.0(7

Trang 14

28.37: a) 3.72 10 A

)2(so,2

6 0

π

Br I

πr

I μ B

2

5 0

N μ

aB I

, a

NI μ

B

a) r = 0.12 m, which is outside the toroid, so B = 0.

)m160.0(2

)A50.8()250(2

3 0

c) r = 0.20 m, which is outside the toroid, so B = 0

)m070.0(2

)A650.0()600(2

3 0

)m060.0(2

)A25.0()400()80(2

1400(

)T350.0()m0290.0(22

0

μ

π N μ K

B πr I

πr

NI μ K

m m

If Km  IIpart(a) 

)A400.2()500(

)T940.1()m2500.0(22

πrB K

πr

NI μ K

b) XmK m 12020

Trang 15

28.43: a) The magnetic field from the solenoid alone is:

(i) (6000m )(0.15A) 1.13 10 3T

0

1 0

mNT

1)

slope

(

0 0

i r

v i

B

v

4)(

sin4

ˆ(

ˆ4

ˆ

2

0 2

μ r

θ v q π

qv r

q π

μ qv

4.0)

m500.0(

s)m1050.6)(

sm1000.9)(

C1000.5)(

C1000.8

(

4 4

6 6

Trang 16

28.47:

m)045.0(

A)s)(2.50m

1000.6)(

C1060.1(22

4 19

I μ qv qvB

F

1.0710 19 N

Let the current run left to right, the electron moves in the opposite direction, below the wire, then the magnetic field at the electron is into the page, and the electron feels a force upward, toward the wire, by the right-hand rule (remember the electron is negative)

ev m

qvB m

F a

2

)m020.0)(

2)(

kg1011.9(

)A25)(

ATm104)(

sm000,250)(

C106.1(

31

7 17

b) The electric force must balance the magnetic force

eE = eVB

r

i v vB E

2

A)Tm/A)(2510

m/s)(4000

,250

π

π 

 62.5N/C, away from the wire

(c) mg(9.1110 31 kg)(9.8m/s2)10 29 N

gravity

neglectcan

weso,10

N10N/C)C)(62.510

6.1(grav

12 el

17 19

el

F F

eE F

Trang 17

28.49: Let the wire connected to the 25.0  resistor be #2 and the wire connected to the 10.0  resistor be #1 Both I1 and I2 are directed toward the right in the figure, so at the location of the proton I2 isand I1 ⊙

T1080.4and

T1020.3T,10

with,2

and

2

5 2

1

5 2

5 1

2 0 2 1

B

πr

I B πr

I

μ

and in the direction ⊙

Force is to the right

N105.00T)

10m/s)(4.8010

C)(65010

602.1

)(

222

x R

IR B

B B

T1075.5]

m)125.0(m)20.0[(

m)A)(0.2050

.1(Tm/A)10

4

2 / 3 2 2

2 7

 perpendicular to the line aband to the velocity

28.51: a)

Along the dashed line, B1 and B2 are in opposite directions

If the line has slope 1.00then r1 r2 and

.0so

, tot2

1  B B

B

Trang 18

28.52: a)

001

ˆˆˆ4

ˆ

40 02 0 2 v0x v0y v0z

r

q π

μ r

q π

C1020.7(

m)T)(0.2510

00.6(4

T1000.6

|

|4and00

4

ˆT)1000.6(ˆˆ4

3 0

2 6

0

6 0

2

0 0

0 2 0

6 0

0 2 0

v r

q π v

v r

q π μ

v v r

q π μ

z

z y

y

y

m/s.607m/s)

521()m/s800(

0

2 0

2 0

v

k j i r

v

4010

ˆˆˆ4

ˆ4

)0,m250.0,0

0 0 0 2

0 2

0 0

z x z

y

r

q π

μ v

v v r

q π r

q π

250.0(

)C1020.7(4

|

|40)m,250.0,0

2

3 0

0 2

q π

μ B

28.53: Choose a cube of edge length L , with one face on the y-z plane Then:

,0ˆ

3 0 0

L B d a

x B d

d

L x L

x L

Trang 19

3 2

2

r

I θ r

I r

I π μ

B

j i

B

ˆ)16(ˆ)3.3312(2

ˆ8.0(m)050.0(

ˆ)6.0(m)050.0(m)030.0(2

3 2

3 0

3 3

2 0

I I

I π μ

I I

I π

j i

ˆT1028.1ˆT1072.3

ˆA)(16)(4.00ˆ

A))0(33.3)(2.0A)

00.4)(

12(2

5 6

c) FI1lBI1lB x jˆI1lB y iˆ

ckwisecounterclo2

.16,N1033.1

;ˆT1028.1ˆT1072.3

]T)1028.1(ˆT)1072.3[(

m010.0A00.1

7 7

8

5 6

i j

from +x-axis.

Trang 20

28.55: a) If the magnetic field at point P is zero, then from Figure (28.46) the current I2

must be out of the page, in order to cancel the field from I Also:1

m)50.1(

m)500.0(A00.62

2 1 2 2

2 0 1

1 0 2

r

r I I πr

I μ πr

I μ B B

b) Given the currents, the field at Q points to the right and has magnitude

m50.1

A00.2m500.0

A00.622

6 0

2

2 1

I r

I π

μ

B Q

c) The magnitude of the field at S is given by the sum of the squares of the two

fields because they are at right angles So:

.T101.2m80.0

A00.2m

60.0

A00.622

6

2 0

2

2 2 2

1

1 0 2 2

I r

I π

μ B

Ia μ B

a x

a a

x π

I μ πr

I μ B

0

2 2 2 2 0 0

22

Trang 21

2 2

0 net

2 2 2 2 0 0

net

a x π

Ix μ B

a x

x a

x π

I μ θ

πr

I μ B

x

C dx

2 2

0

x I

B a

x   which is just like a wire carrying current 2I

Trang 22

28.58: a) Wire carrying current into the page, so it feels a force downward from the

other wires, as shown at right

0

400000

2 2

2 0

m A μ L

F

a x π

Ia μ I IB L

F

b) If the wire carries current out of the page then the forces felt will be the opposite of part (a) Thus the force will be 1.1110 5 N m, upward

28.59: The current in the wires is I  R45.0V 0.50090.0A The currents

in the wires are in opposite directions, so the wires repel The force each wire exerts on the other is

m50.3A0.90AN1022

2 2

To hold the wires at rest, each spring exerts a force of 0.189 N on each wire

Fkx so kF x0.189N 0.0050m37.8N m

28.60: a) Note that the Earth’s magnetic field exerts no force on wire B, since the

current in wire B is parallel to the Earth’s magnetic field Thus, for equilibrium, the remaining two forces that act on wire B must cancel Assuming that the length of wire B

is L and that wire A carries a current I we obtain

0m)(0.1002

)AA)(3.0(1.0

05002

m) π(

A)L I(

μ

So

A1.5m0.100

m0.050A)

0.3

Trang 23

The wires are in equilibrium, so:

mg θ T y θ T F

x:  sin and : cos 

lB

mg mg

T IlB

sin(6.00m)

tan2

2

But

3 0 0

I lμ

θ mg πr I r

sm(9.80m)kg(0.0125m)

1036.8(2

0

2 3

28.62: The forces on the top and bottom segments cancel, leaving the left and right sides:

.ˆ)N10(7.97

ˆm0.026

1m

0.100

12

A)m)(14.0A)(0.200

(5.00

ˆ112

ˆ22

ˆ(ˆ(

5 0

wire 0 wire

0 wire 0

i i

F

i i

i i

r r π

IlI μ πr

I μ πr

I μ Il IlB IlB

l r r

l r

l r

l

x

Ia Nμ a

x

Ia Nμ B

a

2)

(

2 0 2

/ 3 2 2

2 0

2

sinsin

2)(

x

a a I πI N N θ x

Ia Nμ A I N

2)(

cos)

2 2 0 3

2 0 2

x

a a I μ N N x

Ia Nμ a

I N θ μB

c) Having x allows us to simplify the form of the magnetic field, whereas a

assuming x  a means we can assume that the magnetic field from the first loop is constant over the second loop

Trang 24

28.64: 1 ,outof thepage.

4

1122

I b

a

I μ B

B

Trang 25

28.65: a) Recall for a single loop: 2 2 3 / 2.

0

) (

2x a a I

B  Here we have two loops, each of

N turns, and measuring the field along the x-axis from between them means that the

"

" x in the formula is different for each case:

))2((

2

2 0

a a

x

NIa μ B

a x

2

2 0

a a

x

NIa μ B

a x

1)

)2((

1

2 0

x a

a x

NIa μ B

b) Below left: Total magnetic field Below right: Magnetic field from right coil

1)

)2((

12

0,

a a

a a

NIa μ B x

P

.5

4)

45(

0 2 2

2

2 0

a

NI μ a

NIa μ

A)(300)(6.005

45

)2(

3)

)2((

)2(

3

a x a

a x

a x NIa

2 2

2 2

2 0 2

2

2 2 2 2

2 2

2 0 0

))2((

)25()2(

6)

)2((

32

.0)

)2((

)2(3)

)2((

)2(32

a a

x

a x a

a x

NIa μ dx

B

d

a a

a a

a

a NIa

μ dx

2((

)25()2(

6)

)2((

3

a a

x

a x a

a x

Trang 26

28.66: A wire of length l produces a field 0 2 2.

) 2 / (

2()2()2(4and

2

1)

2()2()2(4and

2

2 2

0 2 2

0 top

2 2

0 2 2

0 left

b a b

a π

I μ a

b b

a π

I μ B a l b

x

b a a

b π

I μ b

a a

b π

I μ B b l a

1

2 2

πab

I μ b a b

a a

b π

I μ

and is out of the page

28.68: The horizontal wire yields zero magnetic field since l r 0

d The vertical current provides the magnetic field of HALF of an infinite wire (The contributions from all infinitesimal pieces of the wire point in the same direction, so there is no vector addition or components to worry about.)

,22

and is out of the page

2

33

22

3 2

παR dr

r π α αrrdrdθ JdA

I

r I dr r π πR

I drdθ r πR

I I

R r

i

3 2

3

2 3

2

32

3)

3 0 encl 0

πR

Ir μ B R

r I μ I μ πr B

)

0 encl 0

I B I I

r B d I

I R r

Trang 27

28.70:            2

2 0 encl 0 2

r I A

A I I a r

foundwaswhatjustiswhich2

,

πa

I μ B a

12

1)

2 2

2 2 0 2

2

2 2 0 2 2

2 2 0

2 2

2 2 encl

b c

r c πr

I μ B b

c

r c I μ b c

b r I μ πr B d

B

b c

b r I A

A I I I c

r

b

b

c b

r b

l

(b)

part 28.32,

Exercise

Ex

in asjust 0,,

at and(a),part 28.32,ExerciseEx

in asjust ,2,

πb

I μ B

b

r

28.71: If there is a magnetic field component in the z-direction, it must be constant

because of the symmetry of the wire Therefore the contribution to a surface integral over

a closed cylinder, encompassing a long straight wire will be zero: no flux through the barrel of the cylinder, and equal but opposite flux through the ends The radial field will have no contribution through the ends, but through the barrel:

.00

)(

2 2

2 2 2

2

2 2 encl

a b

a r I ) a π(b

) a π(r I A

A I I b r a

b a

r a

)(

2)

(

)(

2 2

2 2 0

a b

a r πr

I μ B a

b

a r I μ πr B d

πr

I μ B I μ πr B d B I I b

Ngày đăng: 17/01/2014, 04:20

TỪ KHÓA LIÊN QUAN

w