1. Trang chủ
  2. » Cao đẳng - Đại học

slide cơ học vật chất rắn chapter 8 2 new two dimensional problem solution

39 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 7,27 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

8.4 Polar Coordinate Formulation 8.5 General Solutions in Polar Coordinates 8.6 Example Polar Coordinate Solutions cuu duong than cong... 8.4 Polar Coordinate Formulation 8.5 General S

Trang 1

Chapter 8: Two-dimensional problem solution

(Part 2)

cuu duong than cong com

Trang 2

8.4 Polar Coordinate Formulation

8.5 General Solutions in Polar Coordinates

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 3

8.4 Polar Coordinate Formulation

8.5 General Solutions in Polar Coordinates

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 4

2 2 2

σ

ϕτ

cuu duong than cong com

Trang 5

8.4 Polar Coordinate Formulation

1

1 1 2

r r

r

r r

u e

θ θ

θ θ θ

θ θ

cuu duong than cong com

Trang 6

8.4 Polar Coordinate Formulation

8.5 General Solutions in Polar Coordinates

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 7

8.5 General Solutions in Polar Coordinates

3 13

8.3.1 General Michell Solution

cuu duong than cong com

Trang 8

θ θ

σστ

Displacements - Plane Stress Case

Gives Stress Forms

Stress Function Approach

Navier Equation Approach

u=u r (r)e r

(Plane Stress or Plane Strain)

cuu duong than cong com

Trang 9

8.4 Polar Coordinate Formulation

8.5 General Solutions in Polar Coordinates

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 10

σ σ

Using Strain Displacement

Relations and Hooke’s Law for

plane strain gives the radial

Trang 11

For the case of only internal pressure

(p2 = 0 and p1 = p) with r1/r2 = 0.5

Radial stress decays from –p to zero

Hoop stress is positive with a

maximum value at the inner radius:

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 12

Pressurized Hole in an Infinite

Trang 13

derived from the law in Exercise 3.3

Example 8.7 Infinite Medium with a Stress Free Hole Under Uniform Far Field Loading

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 14

σ θ

T

a, ) / ( θ σ

r

/ ) 2 , ( π

Trang 15

Superposition of Example 8.: Biaxial Loading Cases

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 18

cuu duong than cong com

Trang 19

Normal Stress on the x,y-plane (z = 0)

1 1.5

2 2.5

3 3.5

n Two Dimensional Case: σθ

Three Dimensional Case: z

Stress Field

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 20

Quarter Plane Example (α = 0 and β = π/2)

r

r

θ θ

=

=

Wedge Domain Problems

cuu duong than cong com

Trang 21

θ Try Airy Stress Function

r r

r

r

T T T

Use BC’s To Determine Stress Solution

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 22

r r

r r

cuu duong than cong com

Trang 23

2 2

2 2 2

3 2

2 2 2

2

2 2 2

2 cos

2 sin

2 sin cos

r r

Y r

y = π

σ 2 /

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 24

Note unpleasant feature of 2-D model that displacements become unbounded as

r è ∞

cuu duong than cong com

Trang 25

2 2

(1 2 ) 4

2(1 ) 4

ν πµ

π ν σ

3-D Solution eliminates the

unbounded far-field behavior

Comparison of Flamant Results with 3-D Theory-Boussinesq’s Problem

8.6 Example Polar Coordinate Solutions

cuu duong than cong com

Trang 26

Example 9: Half-Space Under Uniform Normal Loading a ≤ x ≤- a

θ θ

2 2

Trang 27

8.6 Example Polar Coordinate Solutions

Along y-axis below the

loading, τxy = 0, and the

x- and y-axes are

principal at these points

and the maximum shear

stress is given by τmax =

½|σx - σy|

A plot of this maximum shear stress versus depth below the surface is shown in Figure 8-27

cuu duong than cong com

Trang 28

Generalized Superposition Method

Half-Space Loading Problems

cuu duong than cong com

Trang 29

8.6 Example Polar Coordinate Solutions

Photoelastic Contact Stress Fields

cuu duong than cong com

Trang 30

Example 10: Notch/Crack Problems

2 2

r

λ θ

λ θ

- Start with Michell solution, we try the

stress Function in generalized form:

Stress ( = O rλ− ) , Displacement ( = O rλ− )

Finite Displacements and Singular Stresses at Crack Tip è 1< λ <2 è λ = 3/2

- Consider the wedge problem for the case

where angle α is small and β is 2π-α

- We pursue the case where α ≈ 0, and the

notch becomes a crack

- The boundary surfaces of the notch are

taken to be stress free, and thus the problem

involves only far-field loadings

where λ is allowed a non-integer

cuu duong than cong com

Trang 31

8.6 Example Polar Coordinate Solutions

•  Note special singular behavior of stress field O(1/√r)

•  A and B coefficients are related to stress intensity factors and are useful in fracture

mechanics theory

•  A terms give symmetric stress fields – Opening or Mode I behavior

cuu duong than cong com

Trang 32

Example 10: Notch/Crack Problems

contours)

Crack Problem Results - Contours of Maximum Shear Stress

cuu duong than cong com

Trang 33

8.6 Example Polar Coordinate Solutions

σσ

Trang 34

Example 12: Curved Cantilever Under End Loading

( ,0) ( ,0) 0 ( , / 2)

( , / 2) ( ) / 2 ( , / 2) 0

b r a

b a b a b r a

Trang 35

8.6 Example Polar Coordinate Solutions

Trang 36

Example 13: Disk Under Diametrical Compression

1

2 cos sin 2

cos 2

π τ

2

2 cos sin 2

cos 2

cuu duong than cong com

Trang 37

8.6 Example Polar Coordinate Solutions

0 ) 0 , (

1 ) 4 (

4 2

) 0 , (

4

4 2

) 0 , (

2 2 2

4

2 2 2

2 2

= τ

= σ

− π

= σ

x

x D

D D

P x

x D

x D D

P x

xy y x

0 ) , 0 (

1 2

2 2

2 2

) , 0 (

2 ) , 0 (

= τ

+

− π

= σ

= π

= σ

y

D y D y D

P y

D

P y

xy y

Trang 38

Example 13: Disk Under Diametrical Compression

(Courtesy of URI Dynamic Photomechanics Lab)

P P

P P

Trang 39

cuu duong than cong com

Ngày đăng: 26/06/2021, 12:38

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w