C.7: CÁC B I U KHI N
PID S
Trang 27.1 KHÁI NI M CHUNG
• Các b PID s c ng làm ch c n ng t ng
t nh các b PID liên t c
– P: Khâu t l
– I: Khâu tích phân
– D: Khâu vi phân
Trang 37.2 B I U KHI N P
• y(t) = KP x(t)
• y(kT) = KP.x(kT)
• GCP(z) = KP
Trang 47.3 B I U KHI N I
0
t I
y t = K ∫ x t dt
0
kT I
y kT = K ∫ x kT dt
( 1)
k T kT
k T
y kT K x kT dt K x kT dt
−
−
( 1)
( ) [( -1) ] ( )
kT I
k T
y kT y k T K x kT dt
−
Trang 5X p x tích phân
x
t
( 1)
( )
kT
I
k T
K x kT dt
−∫
x(kT)
x[(k-1)T]
( 1)
( ) ( ) [( -1) ]
2
kT
I I
k T
K T
−
+
Trang 6( 1)
( ) [( -1) ] ( )
kT I
k T
y kT y k T K x kT dt
−
( ) [( -1) ] ( ) [( -1) ]
2
I
K T
y kT = y k T + x kT + x k T
( ) [( -1) ] ( ) [( -1) ]
2
I
K T
y kT − y k T = x kT + x k T
{ ( ) [( -1) ]} { ( ) [( -1) ]}
2
I
K T
y kT − y k T = ⎧ x kT + x k T ⎫
2
I
K T
Y z − z Y z− = ⎡⎣X z + z X z− ⎤⎦
Trang 71 1
2
I
K T
Y z − z Y z− = ⎡ ⎣ X z + z X z− ⎤ ⎦
( )
I CI
+
−
2
I
K T
Trang 87.4 B I U KHI N D
( ) ( ) D dx t
y t K
dt
=
( ) ( ) D dx kT
y kT K
dt
=
t
x x(kT)
x[(k-1)T]
kT (k-1)T
( ) K D ( ) ( 1)
y kT x kT x k T
{ ( )} K D { ( ) [( 1) ] }
T
1
( ) K D ( ) ( )
Y z X z z X z
T
−
Trang 9( ) K D ( ) ( )
Y z X z z X z
T
−
( )
( )
D CD
Y z K z
G z
−
( ) K D ( ) ( 1)
y k x k x k
T
Trang 107.5 B I U KHI N PI
• G m có b đi u khi n
P và b đi u khi n I
m c song song v i
nhau
G z = G z + G z
1 ( )
I
K T z
z
+
−
A = K + A = −K +
( )
1
CPI
A z A
z
+
=
−
y k = y k − + A x k + A x k −
Trang 117.6 B I U KHI N PD
• G m có b đi u khi n
P và b đi u khi n D
m c song song v i
nhau
1
K z
−
( )
CPD
A z A
z
+
=
y k = A x k + A x k −
Trang 127.7 B I U KHI N PID
• G m có b đi u khi n P,
b đi u khi n I và b đi u
khi n D m c song song
v i nhau
( ) ( ) ( ) ( )
G z = G z +G z +G z
( )
−
2
( )
( 1)
CPID
A z A z A
z z
+ +
=
−
0
1
2
; 2
2 ; 2
P
P
D
K T K
T
K T K
T K
A
T
= − + −
= y k ( ) = y k ( − + 1) A x k0 ( ) + A x k1 ( − + 1) A x k2 ( − 2)