1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi học kì I và đáp áp năm 2010

4 274 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề thi chất lượng học kỳ I lớp 10 - Toán
Trường học Trường THPT Nam Duyên Hà
Chuyên ngành Toán
Thể loại Đề thi
Năm xuất bản 2008-2009
Thành phố Thái Bình
Định dạng
Số trang 4
Dung lượng 188,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Chứng minh rằng A, B, C là ba đỉnh của một tam giác.. Tìm toạ độ trung điểm I của BC, toạ độ trọng tâm G của tam giác ABC c.. Tìm toạ độ điểm D thuộc trục hoành để tam giác ACD vuông tại

Trang 1

sở giáo dục thái bình

trờng thpt nam duyên hà

*******

đề thi chất lợng học kỳ i lớp 10

Năm học 2008 2009

Môn thi: Toán

(Thời gian làm bài 120 phút)

Bài 1 (3 điểm)

1 Cho hàm số y = x2 - 2(m - 1)x + m - 5 có đồ thị là (P ) m

a Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho khi m = 2

b Tìm m để (P ) đi qua gốc toạ độ m

2 Xác định parabol y ax= 2 + +bx cbiết parabol qua A(0;-3), B(1;0) và có trục đối xứng x = 2

Bài 2 (1,5 điểm)

Tìm tập xác định của các hàm số sau:

a y= x− 1

2

x

= − +

− +

Bài 3 (1,5 điểm)

Giải các phơng trình sau:

a x− = 2 3

b 2x− + = 1 2 x

Bài 4 (3 điểm)

1 Cho A(1;- 2), B(3;0), C(- 5; 4)

a Chứng minh rằng A, B, C là ba đỉnh của một tam giác

b Tìm toạ độ trung điểm I của BC, toạ độ trọng tâm G của tam giác ABC

c Tìm toạ độ điểm D thuộc trục hoành để tam giác ACD vuông tại A

2 Cho bốn điểm A, B, C, D Chứng minh rằng: uuur uuur uuur uuurAD BC− =AB DC

3 Cho tam giác ABC với trọng tâm G D là trung điểm của AG, E là điểm trên cạnh AC sao cho 1

5

AE= AC Chứng minh B, D, E thẳng hàng.

Bài 5 (1 điểm)

a Cho A(1; 2), B(3; 4) Tìm điểm C trên trục hoành sao cho AC + CB nhỏ nhất

b Cho tam giác ABC có AB = c, BC = a, AC = b và a b c≤ ≤ Chứng minh rằng:

2

(a b c+ + ) ≤ 9bc

Hết

Trang 2

đáp án và thang điểm

Bài 1 (3 điểm)

1 Cho hàm số y = x2 – 2(m - 1)x + m – 5 có đồ thị là (P ) m

a Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số đã cho khi m = 2

b Tìm m để (P ) đi qua gốc toạ độ m

2 Xác định parabol y ax= 2 + +bx cbiết parabol qua A(0;-3), B(1;0) và có trục đối xứng x = 2

m = 2 ta có y = x2 - 2x - 3

Bảng biến thiên

x - ∞ 1 + ∞ y

+ ∞ + ∞

- 4

0,25

Hàm số đồng biến / (1; + ∞), nghịch biến / (- ∞;1), 0,25 Giao 0y: (0; - 3) Giao 0x (-1;0), (3;0)

2

-2

-4

-1 -2 -3 -4 -5 -6

-1

-2 -3

-4

1 2 4

Vẽ đúng dạng đồ thị

0,25

b (P ) đi qua O(0;0) nên ta có 0 = m - 5 m 0,25

2

Chỉ ra đợc hệ

3 0 2 2

c

a b c b a

 = −

 + + =

− =

0,5

Tìm ra đợc a= -1, b = 4, c = -3 và kết luận y= − +x2 4x− 3 0,5

Bài 2 (1,5 điểm)

Trang 3

Tìm tập xác định của các hàm số sau:

a y= x− 1

2

x

= − +

− +

Bài ý Nội dung Điểm

2

a

ĐK: x− ≥ ⇔ ≥ 1 0 x 1 0,25

b

ĐK: 2 3 0

2 0

x x

− ≥

− + >

Chỉ ra 3 2

TXĐ: 3;2

2

 

Bài 3 (1,5 điểm)

Giải các phơng trình sau:

a x− = 2 3

b 2x− + = 1 2 x

Bài ý Nội dung Điểm

3

a Phơng trình

2 3

x x

− =

1

x x

=

 = −

b

Phơng trình

2 0

x

− ≥



⇔  − = −

Biến đổi thành 2 2

x

 − + =

Bài 4 (3 điểm)

1 Cho A(1;- 2), B(3;0), C(- 5; 4)

a Chứng minh rằng A, B, C là ba đỉnh của một tam giác

b Tìm toạ độ trung điểm I của BC, toạ độ trọng tâm G của tam giác ABC

c Tìm toạ độ điểm D thuộc trục hoành để tam giác ACD vuông tại A

2 Cho bốn điểm A, B, C, D Chứng minh rằng: uuur uuur uuur uuurAD BC− = AB DC

3 Cho tam giác ABC với trọng tâm G D là trung điểm của AG, E là điểm trên

cạnh AC sao cho 1

5

AE= AC Chứng minh B, D, E thẳng hàng

Trang 4

Câu ý Nội dung Điểm

1

0,25 Chỉ ra uuur uuurAB AC, không cùng phơng suy ra A, B, C là 3 đỉnh của

G( 1 2;

3 3

∈ ⇒ tam giác ACD vuông tại A suy ra uuur uuurAC AD. =0 0,25

BC DC DB

 = +

= −



uuur uuur uuur

A

G

D E

0,5

5

Bài 5 (1 điểm)

a Cho A(1; 2), B(3; 4) Tìm điểm C trên trục hoành sao cho AC + CB nhỏ nhất

b Cho tam giác ABC có AB = c, BC = a, AC = b và a b c≤ ≤ Chứng minh rằng:

2

(a b c+ + ) ≤ 9bc

Bài ý Nội dung Điểm

a Chỉ ra đợc C là giao điểm của 0x với A’B, A’ đối xứng với A qua 0x 0,25

A’(1;-2), C(5;0

b Ta có

(a b c+ + ) ≤ (2b c+ ) , đi chứng minh (2b c+ ) 2 ≤ 9bc 0,25 Chứng minh đợc (2b c+ ) 2 ≤ 9bc suy ra ĐPCM 0,25

Chú ý - Trên đây chỉ là các bớc giải và thang điểm cho các bớc

- Trong khi làm bài học sinh phải lập luận và biến đổi hợp lý thì mới

đ-ợc công nhận và cho điểm

- Những lời giải khác đúng vẫn cho điểm tối đa

- Chấm điểm từng phần, điểm toàn bài là tổng điểm thành phần làm

tròn đến 0,5

Ngày đăng: 24/10/2013, 12:11

HÌNH ẢNH LIÊN QUAN

Bảng biến thiên - Đề thi học kì I và đáp áp năm 2010
Bảng bi ến thiên (Trang 2)

TỪ KHÓA LIÊN QUAN

w