1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Cox-Ingersoll-Ross model

16 346 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Cox-Ingersoll-Ross model
Thể loại chapter
Định dạng
Số trang 16
Dung lượng 197,29 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The Cox-Ingersoll-Ross model is the simplest one which avoids negative interest rates.. The Kolmogorov forward equation KFE is a partial differential equation in the “forward” variables

Trang 1

Cox-Ingersoll-Ross model

In the Hull & White model,r ( t )is a Gaussian process Since, for eacht,r ( t )is normally distributed, there is a positive probability thatr ( t ) < 0 The Cox-Ingersoll-Ross model is the simplest one which avoids negative interest rates

We begin with a d-dimensional Brownian motion( W 1 ;W 2 ;::: ;W d ) Let > 0and > 0 be constants Forj = 1 ;::: ;d, letX j (0)2IRbe given so that

X 21 (0) + X 22 (0) + ::: + X 2d (0)0 ;

and letX jbe the solution to the stochastic differential equation

dX j ( t ) =,

1

2 X j ( t ) dt + 1 2  dW j ( t ) :

X jis called the Orstein-Uhlenbeck process It always has a drift toward the origin The solution to

this stochastic differential equation is

X j ( t ) = e,1 2 t

X j (0) + 1 2 Z t

0 e 1 2 u dW j ( u )

:

This solution is a Gaussian process with mean function

m j ( t ) = e,1 2 t X j (0)

and covariance function

 ( s;t ) = 14  2 e,1 2 (s+t)Z s^t

0 e u du:

Define

r ( t ) 4

= X 21 ( t ) + X 22 ( t ) + ::: + X 2d ( t ) :

Ifd = 1, we haver ( t ) = X 21 ( t )and for eacht,IPfr ( t ) > 0g= 1, but (see Fig 31.1)

IP

There are infinitely many values oft > 0for whichr ( t ) = 0



= 1

303

Trang 2

t r(t) = X (t)

x x

1

2

( X (t), X (t) ) 1

1 2

2

Figure 31.1:r ( t )can be zero.

Ifd2, (see Fig 31.1)

IPfThere is at least one value oft > 0for whichr ( t ) = 0g = 0 :

Letf ( x 1 ;x 2 ;::: ;x d ) = x 21 + x 22 + ::: + x 2d Then

f xi = 2 x i ; f xixj =

(

2 ifi = j;

0 ifi6= j:

It ˆo’s formula implies

dr ( t ) =Xd

i=1 f xi dX i + 1 2Xd

i=1 f xixi dX i dX i

=Xd

i=1 2 X i



,

1

2 X i dt + 1

2  dW i ( t )

+Xd

i=1

1

4  2 dW i dW i

=, r ( t ) dt + Xd

i=1 X i dW i + d 2

4 dt

= d 2

4 , r ( t )

!

dt + q

r ( t )Xd

i=1

X i ( t )

p

r ( t ) dW i ( t ) :

Define

W ( t ) =Xd

i=1

0 X i ( u )

p

r ( u ) dW i ( u ) :

Trang 3

ThenW is a martingale,

dW =Xd

i=1

X i

p

r dW i ;

dW dW =Xd

i=1

X 2i

r dt = dt;

soW is a Brownian motion We have

dr ( t ) = d 2

4 , r ( t )

!

dt + q

r ( t ) dW ( t ) :

The Cox-Ingersoll-Ross (CIR) process is given by

dr ( t ) = ( , r ( t )) dt + q

r ( t ) dW ( t ) ;

We define

d = 4

 2 > 0 :

Ifdhappens to be an integer, then we have the representation

r ( t ) =Xd

i=1 X 2i ( t ) ;

but we do not requiredto be an integer Ifd < 2(i.e., < 1

2  2), then

IPfThere are infinitely many values oft > 0for whichr ( t ) = 0g = 1 :

This is not a good parameter choice

Ifd2(i.e.,  1 2  2), then

IPfThere is at least one value oft > 0for whichr ( t ) = 0g = 0 :

With the CIR process, one can derive formulas under the assumption thatd =  4 2 is a positive integer, and they are still correct even whendis not an integer

For example, here is the distribution ofr ( t )for fixedt > 0 Letr (0)0be given Take

X 1 (0) = 0 ; X 2 (0) = 0 ; ::: ; X d,1 (0) = 0 ; X d (0) =q

r (0) :

Fori = 1 ; 2 ;::: ;d,1,X i ( t )is normal with mean zero and variance

 ( t;t ) =  2

4 (1,e, t ) :

Trang 4

X d ( t )is normal with mean

m d ( t ) = e,

1

2 tq

r (0)

and variance ( t;t ) Then

r ( t ) =  ( t;t ) dX ,1

i=1

X i ( t )

p

 ( t;t )

Chi-square withd,1 = 4 ,2

2 degrees of freedom

Normal squared and independent of the other term

(0.1)

Thusr ( t )has a non-central chi-square distribution.

Ast! 1,m d ( t )!0 We have

r ( t ) =  ( t;t )Xd

i=1

X i ( t )

p

 ( t;t )

:

Ast!1, we have ( t;t ) = 2

4 , and so the limiting distribution of r ( t )is 2

4 times a chi-square withd =  4 2 degrees of freedom The chi-square density with 4 2 degrees of freedom is

f ( y ) = 1

2 2 = 2

,

2

2

2 e,y=2 :

We make the change of variabler = 2

4 y The limiting density forr ( t )is

p ( r ) = 4

 2 : 1

2 2 = 2

,

2

2





4

 2 r

2

e,

2r

=

2

 2



2 1 ,

2

2

2 e,

2r :

We computed the mean and variance ofr ( t )in Section 15.7

Consider a Markov process governed by the stochastic differential equation

dX ( t ) = b ( X ( t )) dt +  ( X ( t )) dW ( t ) :

Trang 5

-h

Figure 31.2: The functionh ( y )

Because we are going to apply the following analysis to the case X ( t ) = r ( t ), we assume that

X ( t )0for allt

We start at X (0) = x  0 at time 0 Then X ( t ) is random with density p (0 ;t;x;y )(in they

variable) Since 0 andxwill not change during the following, we omit them and writep ( t;y )rather thanp (0 ;t;x;y ) We have

IEh ( X ( t )) =Z

1

0 h ( y ) p ( t;y ) dy

for any functionh

The Kolmogorov forward equation (KFE) is a partial differential equation in the “forward” variables

tandy We derive it below

Leth ( y )be a smooth function ofy0which vanishes neary = 0and for all large values ofy(see Fig 31.2) It ˆo’s formula implies

dh ( X ( t )) =h

h0

( X ( t )) b ( X ( t ))+ 1 2 h00

( X ( t ))  2 ( X ( t ))i

dt + h0

( X ( t ))  ( X ( t )) dW ( t ) ;

so

h ( X ( t )) = h ( X (0))+Z t

0

h

h0( X ( s )) b ( X ( s ))+ 1 2 h00( X ( s ))  2 ( X ( s ))i

ds +

0 h0

( X ( s ))  ( X ( s )) dW ( s ) ; IEh ( X ( t )) = h ( X (0))+ IEZ t

0

h

h0( X ( s )) b ( X ( s )) dt + 1 2 h00( X ( s ))  2 ( X ( s ))i

ds;

Trang 6

or equivalently,

Z

1

0 h ( y ) p ( t;y ) dy = h ( X (0))+Z t

0

Z 1

0 h0( y ) b ( y ) p ( s;y ) dy ds +

1 2

0

Z 1

0 h00( y )  2 ( y ) p ( s;y ) dy ds:

Differentiate with respect totto get

Z

1

0 h ( y ) p t ( t;y ) dy =Z

1

0 h0( y ) b ( y ) p ( t;y ) dy + 1 2Z

1

0 h00( y )  2 ( y ) p ( t;y ) dy:

Integration by parts yields

Z

1

0 h0

( y ) b ( y ) p ( t;y ) dy = h ( y ) b ( y ) p ( t;y )

y=1

y=0

=0

, Z 1

0 h ( y ) @

@y ( b ( y ) p ( t;y )) dy;

Z

1

0 h00( y )  2 ( y ) p ( t;y ) dy = h0( y )  2 ( y ) p ( t;y )

y=1

y=0

=0

, Z 1

0 h0( y ) @

@y



 2 ( y ) p ( t;y )

dy

=,h ( y ) @

@y



 2 ( y ) p ( t;y )

y=1

y=0

=0

+Z 1

0 h ( y ) @ 2

@y 2



 2 ( y ) p ( t;y )

dy:

Therefore,

Z

1

0 h ( y ) p t ( t;y ) dy =,

Z 1

0 h ( y ) @

@y ( b ( y ) p ( t;y )) dy + 1 2

Z 1

0 h ( y ) @ 2

@y 2



 2 ( y ) p ( t;y )

dy;

or equivalently,

Z

1

0 h ( y )

"

p t ( t;y ) + @

@y ( b ( y ) p ( t;y )), 1 2 @ 2

@y 2



 2 ( y ) p ( t;y )

dy = 0 :

This last equation holds for every functionhof the form in Figure 31.2 It implies that

p t ( t;y ) + @

@y (( b ( y ) p ( t;y )),1 2 @ 2

@y 2



 2 ( y ) p ( t;y )

If there were a place where (KFE) did not hold, then we could takeh ( y ) > 0 at that and nearby points, but takehto be zero elsewhere, and we would obtain

Z 1

0 h

"

p t + @

@y ( bp ),1 2 @ 2

@y 2 (  2 p )

#

dy6= 0 :

Trang 7

If the processX ( t )has an equilibrium density, it will be

p ( y ) = lim t

!1

p ( t;y ) :

In order for this limit to exist, we must have

0 = lim t

!1

p t ( t;y ) :

Lettingt! 1in (KFE), we obtain the equilibrium Kolmogorov forward equation

@

@y ( b ( y ) p ( y )),1 2 @ 2

@y 2



 2 ( y ) p ( y )

= 0 :

When an equilibrium density exists, it is the unique solution to this equation satisfying

p ( y )0 8y0 ;

Z 1

0 p ( y ) dy = 1 :

We computed this to be

p ( r ) = Cr2 ,2

2 e,

2r ;

where

C =

2

 2



2 1 ,

2

2

We compute

p0( r ) = 2 , 2

 2 :p ( r r ) ,

2

 2 p ( r )

= 2  2 r



,1 2  2, r

p ( r ) ;

p00

( r ) =,

2

 2 r 2



,1 2  2, r

p ( r ) + 2  2 r (, ) p ( r ) + 2  2 r



,1 2  2, r

p0

( r )

= 2  2 r



,

1

r ( ,1 2  2, r ), + 2  2 r ( ,1 2  2, r ) 2

p ( r )

We want to verify the equilibrium Kolmogorov forward equation for the CIR process:

@

@r (( , r ) p ( r )),

1

2 @ 2

Trang 8

@

@r (( , r ) p ( r )) =, p ( r ) + ( , r ) p0( r ) ;

@ 2

@r 2 (  2 rp ( r )) = @

@r (  2 p ( r ) +  2 rp0

( r ))

= 2  2 p0

( r ) +  2 rp00

( r ) :

The LHS of (EKFE) becomes

, p ( r ) + ( , r ) p0( r ), 2 p0( r ),1 2  2 rp0( r )

= p ( r )



+ 1 r ( , 1 2  2

2

 2 r ( ,1 2  2

= p ( r )

( ,1 2  2

 2 r ( ,1 2  2, r ) + 1 r ( ,

1

2  2

2

 2 r ( ,

1

2  2

= 0 ;

as expected

The interest rate processr ( t )is given by

dr ( t ) = ( , r ( t )) dt + q

r ( t ) dW ( t ) ;

wherer (0)is given The bond price process is

B ( t;T ) = IE

"

exp

(

,

t r ( u ) du

)

#

:

Because

exp ,

0 r ( u ) du

B ( t;T ) = IE

"

exp

(

,

0 r ( u ) du

)

#

;

the tower property implies that this is a martingale The Markov property implies thatB ( t;T )is random only through a dependence onr ( t ) Thus, there is a functionB ( r;t;T )of the three dummy variablesr;t;Tsuch that the processB ( t;T )is the functionB ( r;t;T )evaluated atr ( t ) ;t;T, i.e.,

B ( t;T ) = B ( r ( t ) ;t;T ) :

Trang 9

,

B ( r ( t ) ;t;T )is a martingale, its differential has nodtterm We com-pute

d

exp ,

0 r ( u ) du

B ( r ( t ) ;t;T )

= exp

,

0 r ( u ) du 

1

2 B rr ( r ( t ) ;t;T ) dr ( t ) dr ( t ) + B t ( r ( t ) ;t;T ) dt

:

The expression in[ ::: ]equals

=,rB dt + B r ( , r ) dt + B r p

r dW

+ 1 2 B rr  2 r dt + B t dt:

Setting thedtterm to zero, we obtain the partial differential equation

,rB ( r;t;T )+ B t ( r;t;T )+ ( , r ) B r ( r;t;T )+ 1 2  2 rB rr ( r;t;T ) = 0 ;

0t < T; r0 : (4.1) The terminal condition is

B ( r;T;T ) = 1 ; r0 :

Surprisingly, this equation has a closed form solution Using the Hull & White model as a guide,

we look for a solution of the form

B ( r;t;T ) = e,rC(t;T),A(t;T) ;

whereC ( T;T ) = 0 ; A ( T;T ) = 0 Then we have

B t = (,rC t,A t ) B;

B r =,CB; B rr = C 2 B;

and the partial differential equation becomes

0 =,rB + (,rC t,A t ) B,( , r ) CB + 1 2  2 rC 2 B

= rB (,1,C t + C + 1

2  2 C 2 ),B ( A t + C )

We first solve the ordinary differential equation

,1,C t ( t;T ) + C ( t;T ) + 1 2  2 C 2 ( t;T ) = 0; C ( T;T ) = 0 ;

and then set

A ( t;T ) = Z T

t C ( u;T ) du;

Trang 10

soA ( T;T ) = 0and

A t ( t;T ) =, C ( t;T ) :

It is tedious but straightforward to check that the solutions are given by

C ( t;T ) = sinh( ( T,t ))

cosh( ( T,t )) + 1 2 sinh( ( T,t )) ;

A ( t;T ) =,

2

 2 log

2

4

1

2 (T,t)

cosh( ( T,t )) + 1 2 sinh( ( T,t ))

3

where

= 1 2q

2 + 2  2 ; sinh u = e u,e,u

2 ; cosh u = e u + e,u

Thus in the CIR model, we have

IE

"

exp

(

,

t r ( u ) du

)

#

= B ( r ( t ) ;t;T ) ;

where

B ( r;t;T ) = expf,rC ( t;T ),A ( t;T )g; 0t < T; r0 ;

andC ( t;T )andA ( t;T )are given by the formulas above Because the coefficients in

dr ( t ) = ( , r ( t )) dt + q

r ( t ) dW ( t )

do not depend ont, the functionB ( r;t;T )depends ontandT only through their difference =

T ,t Similarly,C ( t;T ) andA ( t;T ) are functions of = T ,t We writeB ( r; )instead of

B ( r;t;T ), and we have

B ( r; ) = expf,rC (  ),A (  )g;  0 ; r0 ;

where

C (  ) = cosh( sinh( )+ 1 )

2 sinh( ) ;

A (  ) =,

2

 2 log

2

4

1

2 

cosh( )+ 1 2 sinh( )

3

= 1 2q

2 + 2  2 :

We have

B ( r (0) ;T ) = IE exp

(

,

0 r ( u ) du

)

:

Nowr ( u ) > 0for eachu, almost surely, soB ( r (0) ;T )is strictly decreasing inT Moreover,

B ( r (0) ; 0) = 1 ;

Trang 11

T!1

B ( r (0) ;T ) = IE exp

, Z 1

0 r ( u ) du

= 0 :

But also,

B ( r (0) ;T ) = expf,r (0) C ( T ),A ( T )g;

so

r (0) C (0)+ A (0) = 0 ;

lim

T!1

[ r (0) C ( T )+ A ( T )] =1;

and

r (0) C ( T )+ A ( T )

is strictly inreasing inT

The value at timetof an option on a bond in the CIR model is

v ( t;r ( t )) = IE

"

exp

(

,

t r ( u ) du

)

( B ( T 1 ;T 2 ),K ) +

#

;

whereT 1is the expiration time of the option,T 2is the maturity time of the bond, and0tT 1

T 2 As usual,expn

,

0 r ( u ) duo

v ( t;r ( t ))is a martingale, and this leads to the partial differential equation

,rv + v t + ( , r ) v r + 1 2  2 rv rr = 0 ; 0t < T 1 ; r0 :

(wherev = v ( t;r ).) The terminal condition is

v ( T 1 ;r ) = ( B ( r;T 1 ;T 2 ),K ) + ; r0 :

Other European derivative securities on the bond are priced using the same partial differential equa-tion with the terminal condiequa-tion appropriate for the particular security

Process time scale: In this time scale, the interest rater ( t )is given by the constant coefficient CIR equation

dr ( t ) = ( , r ( t )) dt + q

r ( t ) dW ( t ) :

Real time scale: In this time scale, the interest rater ^ (^ t )is given by a time-dependent CIR equation

d r ^ (^ t ) = (^ (^ t ) ^ (^ t )^ r (^ t )) d ^ t + ^  (^ t )q

^

r (^ t ) d W ^ (^ t ) :

Trang 12

-6

^

t : Real time

t = ' (^ t )

.

.

-

A pe-riod of high inter-est rate volatility

Figure 31.3: Time change function.

There is a strictly increasing time change functiont = ' (^ t )which relates the two time scales (See Fig 31.3)

LetB ^ (^ r; ^ t; T ^ )denote the price at real time^ tof a bond with maturityT ^when the interest rate at time

^

tisr ^ We want to set things up so

^

B (^ r; ^ t; T ^ ) = B ( r;t;T ) = e,rC(t;T),A(t;T) ;

wheret = ' (^ t ) ; T = ' ( ^ T ), andC ( t;T )andA ( t;T )are as defined previously

We need to determine the relationship betweenr ^andr We have

B ( r (0) ; 0 ;T ) = IE exp

(

,

0 r ( t ) dt

)

;

B (^ r (0) ; 0 ; T ^ ) = IE exp

(

,

0 ^ r (^ t ) d t ^

)

:

WithT = ' (^ T ), make the change of variablet = ' (^ t ),dt = '0(^ t ) d ^ tin the first integral to get

B ( r (0) ; 0 ;T ) = IE exp

(

,

0 r ( ' (^ t )) '0(^ t ) d t ^

)

;

and this will beB (^ r (0) ; 0 ; T ^ )if we set

^

r (^ t ) = r ( ' (^ t )) '0(^ t ) :

Trang 13

31.7 Calibration

^

B (^ r (^ t ) ; ^ t; T ^ ) = B ' ^ r (^0(^ t t ) ) ;' (^ t ) ;' (^ T )

!

= exp

(

'0(^ t ) ,A ( ' (^ t ) ;' (^ T ))

)

= expn

;

where

^

C (^ t; T ^ ) = C ( ' (^ t ) ;' (^ T ))

'0(^ t )

^

A (^ t; T ^ ) = A ( ' (^ t ) ;' (^ T ))

do not depend on^ tandT ^ only throughT ^,^ t, since, in the real time scale, the model coefficients are time dependent

Suppose we know^ r (0)andB ^ (^ r (0) ; 0 ; T ^ )for allT ^2[0 ; T ^] We calibrate by writing the equation

^

B (^ r (0) ; 0 ; T ^ ) = expn

,r ^ (0) ^ C (0 ; T ^ ),A ^ (0 ; T ^ )o

;

or equivalently,

,log ^ B (^ r (0) ; 0 ; T ^ ) = ^ r (0)

'0(0) C ( ' (0) ;' (^ T )) + A ( ' (0) ;' (^ T )) :

Take ; and so the equilibrium distribution ofr ( t )seems reasonable These values determine the functionsC;A Take '0(0) = 1 (we justify this in the next section) For each T ^, solve the equation for' ( ^ T ):

,log ^ B (^ r (0) ; 0 ; T ^ ) = ^ r (0) C (0 ;' (^ T )) + A (0 ;' (^ T )) : (*) The right-hand side of this equation is increasing in the' (^ T ) variable, starting at 0 at time0and having limit1at1, i.e.,

^

r (0) C (0 ; 0)+ A (0 ; 0) = 0 ;

lim

T!1

[^ r (0) C (0 ;T )+ A (0 ;T )] =1:

Since0 ,log ^ B (^ r (0) ; 0 ; T ^ ) <1;(*) has a unique solution for eachT ^ ForT ^ = 0, this solution

is' (0) = 0 IfT ^ 1 < T ^ 2, then

,log ^ B ( r (0) ; 0 ; T ^ 1 ) <,log ^ B ( r (0) ; 0 ; T ^ 2 ) ;

so' (^ T 1 ) < ' (^ T 2 ) Thus'is a strictly increasing time-change-function with the right properties

Trang 14

31.8 Tracking down'

0

Result for general term structure models:

,

@

@T log B (0 ;T )

T=0 = r (0) :

Justification:

B (0 ;T ) = IE exp

(

,

0 r ( u ) du

)

:

(

,

0 r ( u ) du

)

,

@

@T log B (0 ;T ) = IE



r ( T ) e,

0 r(u) du

IEe,

0 r(u) du

,

@

@T log B (0 ;T )

T=0 = r (0) :

In the real time scale associated with the calibration of CIR by time change, we write the bond price as

^

B (^ r (0) ; 0 ; T ^ ) ;

thereby indicating explicitly the initial interest rate The above says that

,

@

@ T ^ log ^ B (^ r (0) ; 0 ; T ^ )

^T=0 = ^ r (0) :

The calibration of CIR by time change requires that we find a strictly increasing function'with

' (0) = 0such that

,log ^ B (^ r (0) ; 0 ; T ^ ) = 1 '0(0)^ r (0) C ( ' (^ T )) + A ( ' (^ T )) ; T ^0 ; (cal) whereB ^ (^ r (0) ; 0 ; T ^ ), determined by market data, is strictly increasing inT ^, starts at 1 whenT ^ = 0, and goes to zero asT ^! 1 Therefore,,log ^ B (^ r (0) ; 0 ; T ^ )is as shown in Fig 31.4

Consider the function

^

r (0) C ( T )+ A ( T ) ;

HereC ( T )andA ( T )are given by

C ( T ) = cosh( sinh( )+ 1 )

2 sinh( ) ;

A ( T ) = ,

2

 2 log

2

4

1

2 T

cosh( )+ 1

2 sinh( )

3

= 1 2q

2 + 2  2 :

...

!

dt + q

r ( t ) dW ( t ) :

The Cox-Ingersoll-Ross (CIR) process is given by

dr ( t ) = ( , r... :

Surprisingly, this equation has a closed form solution Using the Hull & White model as a guide,

we look for a solution of the form

B ( r;t;T ) = e,rC(t;T),A(t;T)

Ngày đăng: 18/10/2013, 03:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w