so bothB 1 andB 2are Brownian motions.
Trang 1Recognizing a Brownian Motion
Theorem 0.62 (Levy) Let B ( t ) ; 0 t T;be a process on ;F;P), adapted to a filtration
F( t ) ; 0tT, such that:
1 the paths ofB ( t )are continuous,
2. Bis a martingale,
3. hBi( t ) = t; 0tT, (i.e., informallydB ( t ) dB ( t ) = dt).
ThenBis a Brownian motion.
Proof: (Idea) Let0 s < t T be given We need to show thatB ( t ),B ( s ) is normal, with mean zero and variancet,s, and B ( t ),B ( s )is independent of F( s ) We shall show that the
conditional moment generating function ofB ( t ),B ( s )is
IE
e u(B(t),B(s))
F( s )
= e 1 2u2(t,s) :
Since the moment generating function characterizes the distribution, this shows thatB ( t ),B ( s )
is normal with mean 0 and variance t,s, and conditioning on F( s ) does not affect this, i.e.,
B ( t ),B ( s )is independent ofF( s )
We compute (this uses the continuity condition (1) of the theorem)
de uB(t) = ue uB(t) dB ( t ) + 1 2 u 2 e uB(t) dB ( t ) dB ( t ) ; so
e uB(t) = e uB(s) +Z t
s ue uB(v) dB ( v ) + 1
2 u 2Z t
s e uB(v) |{z}dv:
uses cond 3
233
Trang 2R0 t ue uB(v) dB ( v )is a martingale (by condition 2), and so
IE t
s ue uB(v) dB ( v )
F( s )
=,
Z s
0 ue uB(v) dB ( v ) + IE t
0 ue uB(v) dB ( v )
F( s )
= 0 :
It follows that
IE
e uB(t)
F( s )
= e uB(s) + 1 2 u 2Z t
s IE
e uB(v)
F( s )
dv:
We define
' ( v ) = IE
e uB(v)
F( s )
;
so that
' ( s ) = e uB(s)
and
' ( t ) = e uB(s) + 1 2 u 2Z t
s ' ( v ) dv;
'0
( t ) = 1 2 u 2 ' ( t ) ; ' ( t ) = ke 1 2u2t : Plugging ins, we get
e uB(s) = ke 1 2u2s =)k = e uB(s),1 2u2s : Therefore,
IE
e uB(t)
F( s )
= ' ( t ) = e uB(s)+12u2(t,s) ;
IE
e u(B(t),B(s))
F( s )
= e 1 2u2(t,s) :
Trang 323.1 Identifying volatility and correlation
LetB 1 andB 2be independent Brownian motions and
dS 1
S 1 = r dt + 11 dB 1 + 12 dB 2 ;
dS 2
S 2 = r dt + 21 dB 1 + 22 dB 2 ; Define
1 =q
211 + 212 ;
2 =q
221 + 222 ;
= 11 21 + 12 22
1 2 : Define processesW 1andW 2by
dW 1 = 11 dB 1 + 12 dB 2
1
dW 2 = 21 dB 1 + 22 dB 2
ThenW 1andW 2have continuous paths, are martingales, and
dW 1 dW 1 = 1 21 ( 11 dB 1 + 12 dB 2 ) 2
= 1 21 ( 211 dB 1 dB 1 + 212 dB 2 dB 2 )
= dt;
and similarly
dW 2 dW 2 = dt:
Therefore,W 1andW 2are Brownian motions The stock prices have the representation
dS 1
S 1 = r dt + 1 dW 1 ;
dS 2
S 2 = r dt + 2 dW 2 : The Brownian motionsW 1andW 2are correlated Indeed,
dW 1 dW 2 = 1 1 2 ( 11 dB 1 + 12 dB 2 )( 21 dB 1 + 22 dB 2 )
= 1 1 2 ( 11 21 + 12 22 ) dt
= dt:
Trang 423.2 Reversing the process
Suppose we are given that
dS 1
S 1 = r dt + 1 dW 1 ;
dS 2
S 2 = r dt + 2 dW 2 ; whereW 1 andW 2are Brownian motions with correlation coefficient We want to find
=
"
11 12
21 22
#
so that
0=
"
11 12
21 22
# "
11 21
12 22
#
=
"
211 + 212 11 21 + 12 22
11 21 + 12 22 221 + 222
#
=
"
21 1 2
1 2 22
#
A simple (but not unique) solution is (see Chapter 19)
11 = 1 ; 12 = 0 ;
21 = 2 ; 22 =q
1, 2 2 : This corresponds to
1 dW 1 = 1 dB 1 =)dB 1 = dW 1 ;
2 dW 2 = 2 dB 1 +q
1, 2 2 dB 2
=) dB 2 = dW 2, dW 1
p
1, 2 ; ( 6=1)
If =1, then there is noB 2anddW 2 = dB 1 = dW 1 :
Continuing in the case6=1, we have
dB 1 dB 1 = dW 1 dW 1 = dt;
dB 2 dB 2 = 1 1
, 2
dW 2 dW 2,2 dW 1 dW 2 + 2 dW 2 dW 2
= 1 1
, 2
dt,2 2 dt + 2 dt
= dt;
Trang 5so bothB 1 andB 2are Brownian motions Furthermore,
dB 1 dB 2 = p 1
1, 2 ( dW 1 dW 2,dW 1 dW 1 )
= p 1
1, 2 ( dt, dt ) = 0 :
We can now apply an Extension of Levy’s Theorem that says that Brownian motions with zero
cross-variation are independent, to conclude thatB 1 ;B 2are independent Brownians
... 3233
Trang 2R0 t ue uB(v) dB ( v )is a martingale... dt
= dt;
Trang 5so bothB 1 andB 2are Brownian motions... generating function characterizes the distribution, this shows thatB ( t ),B ( s )
is normal with mean and variance t,s, and