1. Trang chủ
  2. » Luận Văn - Báo Cáo

Phát hiện đột nhập bằng camera theo dõi

18 333 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Phát hiện đột nhập bằng camera theo dõi
Tác giả Nguyễn Quang Quý
Người hướng dẫn PGS. TS. Ngô Quốc Tạo
Trường học Trường Đại học Công nghệ Thông tin - Đại học Quốc gia Hà Nội
Chuyên ngành Kỹ thuật phần mềm
Thể loại Luận văn Thạc sĩ
Năm xuất bản 2011
Thành phố Hà Nội
Định dạng
Số trang 18
Dung lượng 472,77 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Phát hiện đột nhập bằng camera theo dõi Nguyễn Quang Quý

Trang 1

Phát hiện đột nhập bằng camera theo dõi

Nguyễn Quang Quý

Khoa Luật Luận văn Thạc sĩ ngành: Công nghệ phần mềm; Mã số: 60 48 10

Người hướng dẫn: PGS TS Ngô Quốc Tạo

Năm bảo vệ: 2011

Abstract: Giới thiệu tổng quan về hệ thống giám sát bằng video, bài toán phát hiện

chuyển động và một số ứng dụng thực tế của bài toán Giới thiệu một số giải thuật phát hiện chuyển động trước đó Giới thiệu nội dung chính giải thuật phát hiện chuyển động Giới thiệu chương trình demo phát hiện đột nhập và mô hình hệ thống tự động phát hiện và cảnh báo đối tượng đột nhập vào mục tiêu cần bảo vệ, một số kết quả

thực nghiệm

Keywords: An toàn dữ liệu; Hệ thống giám sát; Phát hiện chuyển động; Camera;

Công nghệ thông tin

Content

Chương 1 GIỚI THIỆU BÀI TOÁN PHÁT HIỆN CHUYỂN ĐỘNG

1.1 Giới thiệu

Ngay từ xa xưa, con người đã có ý thức bảo vệ an toàn cho các địa điểm, mục tiêu quan trọng tránh sự xâm nhập của kẻ thù và các đối tượng khác Con người là công cụ đơn giản nhất nhưng đồng thời cũng mang lại hiệu quả nhất trong việc giám sát bảo vệ mục tiêu Công nghệ thông tin và các thiết bị kỹ thuật số phát triển đã mang đến cho con người nhiều công cụ mới phục vụ cho các nhu cầu của mình Các thiết bị kỹ thuật số ra đời như máy ảnh, camera… đã hỗ trợ đắc lực con người trong việc bảo vệ mục tiêu an toàn và liên tục

Bên cạnh sự phát triển của các thiết bị phần cứng, kỹ thuật xử lý ảnh số cho phép xử lý dữ liệu thu được từ các thiết bị quan sát và đưa ra cảnh báo khi có một đối tượng đột nhập vào mục tiêu, đồng thời hệ thống sẽ lưu lại hình ảnh đối tượng và theo dấu đối tượng trong vùng quan sát Căn cứ vào cảnh báo tự động đó, người bảo vệ sẽ biết có biện pháp xử lý để đảm bảo mục tiêu an toàn

Một hệ thống giám sát bằng camera gồm các thành phần sau:

- Các camera giám sát đặt tại các địa điểm ta cần quan sát: Cửa, hành lang, cầu thang, trong phòng…

- Máy tính để xử lý và lưu trữ dữ liệu hình ảnh do camera thu nhận được

- Các thiết bị hiển thị màn hình, thiết bị truyền dữ liệu Tín hiệu có thể được truyền trên mạng Interent phục vụ yêu cầu giám sát từ xa

Trang 2

- Phần mềm chạy trên máy tính để xử lý dữ liệu thu được từ camera và đưa ra các quyết định

Luận văn tập trung nghiên cứu các phương pháp xử lý ảnh, video kỹ thuật số để tự động phát hiện, cảnh báo khi có đối tượng đột nhập thông qua hệ thống camera theo dõi Để phát hiện được đối tượng đột nhập, trước hết bài toán đặt ra là phát hiện tất cả các chuyển động trong vùng camera theo dõi, sau đó phân tích và đưa ra những cảnh báo khác nhau khi đối tượng vào những khu vực giám sát Bài toán phát hiện chuyển động (Motion Detection) là bài toán cơ sở, mà từ đó con người đã xây dựng rất nhiều ứng dụng như: Hệ thống giám sát bảo

vệ mục tiêu, hệ thống giám sát và phân luồng giao thông, phân tích cử động của con người trong nghiên cứu chế tạo robot…

Tổng quát, có ba phương pháp phát hiện chuyển động chính hiện nay là: Phương pháp trừ nền - Background Subtraction, Phương pháp dựa vào sự biến đổi giá trị theo thời gian - Temporal Differencing và Phương pháp luồng tối ưu - Optical Flow, cụ thể như sau:

- Phương pháp trừ nền: là phương pháp thông dụng nhất, phương pháp này xác định sự sai khác do đối tượng chuyển động tạo ra bằng các trừ từng bit tương ứng của hai frame liên tiếp nhau trong chuỗi video thu được từ camera Phương pháp này thích ứng với môi trường động

có nhiều đối tượng chuyển động phức tạp, phát hiện chuyển động biên độ nhỏ và ít phụ thuộc vào vận tốc cũng như kích thước của đối tượng chuyển động

- Phương pháp dựa vào sự biến đổi giá trị theo thời gian: dựa vào sự biến đối của một giá trị ảnh theo thời gian để xác định đối tượng chuyển động (Ví dụ: Temporal Gradient – dựa trên biến đối của Gradient theo thời gian Khả năng chuyển động của đối tượng theo phương pháp này được đo bằng sự thay đổi tức thời của cường độ hình ảnh) Phương pháp này thích ứng với sự thay đổi của môi trường, nhưng nó bị phụ thuộc vào tốc độ và kích thước và số lượng đối tượng chuyển động Phương pháp này hiệu quả nhất khi dùng phát hiện và theo dõi một đối tượng chuyển động

- Phương pháp luồng tối ưu: chỉ ra sự chuyển động dự kiến của đối tượng trong ảnh Phương pháp này cho kết quả khá tốt với những ảnh đầu vào phức tạp Tuy nhiên, nó đòi hỏi

độ phức tạp tính toán cao, nên khó khăn trong việc áp dụng, triển khai thực tế

Các chức năng chính của hệ thống giám sát bằng camera:

(1) Xác định các vùng có khả năng chứa đối tượng chuyển động - Mặt nạ vùng chuyển động:

(2) Trên cơ sở mặt nạ vùng chuyển động, ta sẽ xác định các đối tượng chuyển động (vị trí, kích thước)

(3) Khi phát hiện được đối tượng chuyển động, ta thực hiện chức năng theo dõi đối tượng chuyển động Đối tượng chuyển động sẽ được theo dõi khi chuyển động trong vùng camera theo dõi:

Trang 3

FG/BG Detection Module

Blob Tracking Module

Trajectory Generation Module

Frames Blob Entering Detection

Module

Trajectory PostProcessing Module

Blobs (Id,Pos,Size) Blob position correction

Sơ đồ khối hệ thống phát hiện và giám sát đối tượng chuyển động

FG mask: foreground mask – Mặt nạ vùng chuyển động

FG/BG: foreground/background: Vùng chứa đối tượng chuyển động/Nền

Blob: Đối tượng chuyển động

Yêu cầu của bài toán phát hiện chuyển động là:

- Phát hiện tất cả các chuyển động trong vùng camera giám sát

- Hệ thống phải xử lý được trong thời gian thực với độ trễ có thể chấp nhận được, có nghĩa

là giải thuật tối ưu phải đạt được: tốc độ tính toán chấp nhận được, yêu cầu về bộ nhớ thấp

- Hệ thống có tính linh hoạt, tương thích với các điều kiện, môi trường quan sát khác nhau

1.2 Ứng dụng thực tế của bài toán phát hiện chuyển động

Ứng dụng đầu tiên và rộng rãi nhất của bài toán phát hiện chuyển động là xây dựng các hệ thống tự động giám sát mục tiêu và theo dõi đối tượng Ứng dụng này đặc biệt quan trong trong nhiệm vụ quốc phòng, an ninh bảo vệ các mục tiêu trọng yếu của Đảng và Nhà nước Ngoài ra, hệ thống giám sát còn được sử dụng bảo vệ cơ quan, xí nghiệp, nhà máy, công ty và nhà riêng

Bên cạnh những ứng dụng về giám sát an ninh, bài toán phát hiện chuyển động còn được ứng dụng trong điều khiển, phân luồng giao thông Bài toán phát hiện chuyển động có thể ứng dụng để xây dựng hệ thống thu thập thông tin về các phương tiện tham gia giao thông trên các nút giao thông quan trọng Trên cơ sở thuật toán phát hiện chuyển động sẽ xác định số lượng phương tiện tham gia giao thông tại từng nút giao thông, từ đó người điều hành giao thông có thể tính toán để phân định luồng giao thông hợp lý nhất

Trên lĩnh vực nghiên cứu khoa học, bài toán phát hiện chuyển động còn được sử dụng trong các ứng dụng về thị giác máy tính (Computer Vision Applications) bao gồm: phân tích cử động của con người, tương tác người máy… Một ứng dụng chúng ta thường thấy là nghiên cứu, chế tạo robot

Trang 4

Chương 2

MỘT SỐ GIẢI THUẬT PHÁT HIỆN CHUYỂN ĐỘNG

Một số giải thuật sử dụng phương pháp trừ nền đã được nghiên cứu: Giải thuật trừ nền cơ bản - Simple background Subtraction; Giải thuật trừ nền trung bình - Running Average; Giải thuật Σ-Δ - Σ-Δ Estimation; Giải thuật Σ-Δ cải tiến - Multiple Σ-Δ Estimation; Giải thuật thống kê khác biệt cơ bản - Simple Statistical Difference; Giải thuật trừ nền trung bình với biến đổi cosine rời rạc - Running Average with Discrete Cosine Transform

2.1 Giải thuật trừ nền cơ

Là phương pháp so sánh ảnh đơn giản nhất, dựa trên sự sai khác giữa hai ảnh và so sánh sự sai khác này với một giá trị ngưỡng cho trước Trường hợp sự sai khác này lớn hơn giá trị ngưỡng đã cho, đưa ra kết luận có đối tượng chuyển động

D(x,y): Mặt nạ nhị phân phát hiện chuyển động được định nghĩa:

t t

1, if ( , ) ( , ) ( , )

0, if ( , ) ( , )

I x y B x y

D x y

I x y B x y



 : Ngưỡng cho trước; B(x,y): Giá trị nền cố định; It(x,y): Giá trị frame video đến ; t là chỉ

số frame thuộc: 0 K; I0(x,y) = B(x,y)

Đánh giá:

Ưu điểm: Thuật toán đơn giản, thời gian tính toán nhanh, hữu dụng trong trường hợp chỉ

cần xác định những thay đổi bộ phận, mà không cần xác định sự thay đổi của toàn bộ khung hình

Nhược điểm: Độ chính xác của thuật toán này thấp, kết quả không chính xác đối với những

trường hợp đối tượng trong đoạn video hầu như không di chuyển, ảnh có nhiều nhiễu

2.2 Giải thuật trừ nền trung bình

Thay vì giữ nguyên giá trị nền B(x,y) trong phép trừ nền, phương pháp này cập nhật liên tục giá trị nền nhằm tăng tính chính xác cho kết quả phát hiện đối tượng chuyển động Với:

 : Ngưỡng cho trước; : Tham số cập nhật nền cho trước [0,1]; Bt(x,y): Giá trị nền;

It(x,y): Giá trị frame đến Giá trị khởi tạo: B0(x,y) = I0(x,y)

Bước 1: Cập nhật giá trị nền Bt(x,y) theo chỉ số frame t:

1

Bước 2: Tính mặt nạ nhịn phân phát hiện chuyển động D(x,y):

t

t

( , )

t

t

D(x,y) = 0, đây là những pixel của nền Ngược lại, D(x,y) = 1, đây là những pixel của đối tượng chuyển động

Đánh giá:

Ưu điểm: Việc cập nhật liên tục giá trị nền thông qua tham số  đã làm tăng độ chính xác phát hiện đối tượng chuyển động so với thuật toán trừ nền cơ bản Cài đặt giải thuật đơn giản,

độ phức tạp tính toán thấp, tốc độ xử lý nhanh

Trang 5

Nhược điểm: Vẫn chưa giải quyết được những hạn chế của phương pháp trừ nền cơ bản đó

là: kết quả phát hiện không chính xác đối với những trường hợp đối tượng trong đoạn video hầu như không di chuyển, camera thu ảnh có nhiều nhiễu

2.3 Giải thuật Σ-Δ

Giải thuật Σ-Δ dựa trên phương pháp đệ quy không tuyến tính đơn giản (còn được gọi là bộ

lọc Σ-Δ) bằng việc sử dụng hàm sgn(a) để ước lượng giá trị của nền, sgn(a) được định nghĩa

như sau:

1, if > 0 sgn( ) 0, if = 0

1 if < 0

 



a: là giá trị thực cho trước

Khi đó mô hình nền sẽ được cập nhật theo hàm sgn(a) như sau:

( , ) ( , ) sgn( ( , ) ( , ))

B x yBx yI x yBx y

1

đến hiện thời thứ t; B x y0( , )I x y0( , ): giá trị khởi tạo với frame đầu tiên

Hiệu tuyệt đối giữa nền và frame video đến Bt(x,y) và It(x,y):

Tính ngưỡng cho việc phát hiện đối tượng chuyển động: Sử dụng biến Vt(x,y) được tính

bằng việc ứng dụng hàm sgn(a), nhằm xác định mỗi pixel của một frame đang xét sẽ là pixel

“nền” hay pixel của “đối tượng chuyển động”

Khởi tạo V x y0( , ) 0( , )x y 0 Công thức tính Vt(x,y) :

( , ) ( , ) sgn( ( , ) ( , ))

V x yVx yN x yVx y

Vt(x,y), Vt-1(x,y) tương ứng là giá trị biến theo thời gian hiện thời thứ t và trước đó thứ (t-1) ; N là tham số cho trước từ 1 – 4

Mặt nạ nhị phân phát hiện đối tượng chuyển động D(x,y):

t

t

1, if ( , ) ( , ) ( , )

0, if ( , ) ( , )

t

t

x y V x y

D x y

x y V x y

 Nếu D(x,y) = 0, pixel của nền Ngược lại, D(x,y) = 1, pixel của đối tượng chuyển động

Đánh giá:

Ưu điểm: Sử dụng thuật toán được chuẩn hóa theo thời gian, giải thuật xử lý nhanh, tăng

hiệu quả tính toán và độ chính xác trong phát hiện đối tượng chuyển động so với hai giải thuật

đã trình ở phần trên

Nhược điểm: Hạn chế của phương pháp này là khả năng phát hiện kém đối với những đối

tượng chuyển động trong cảnh phức tạp, có chứa nhiều đối tượng chuyển động

2.4 Giải thuật Σ-Δ cải tiến

Giải thuật Σ-Δ cập nhật mô hình nền theo hằng số thời gian sgn(a) Điều này tạo ra hạn chế

đối với những ảnh chứa nhiều đối tượng chuyển động hoặc đối tượng có nhiều chuyển động Giải thuật Σ-Δ cải tiến được đề xuất để giải quyết bài toán nhiều đối tượng và nhiều chuyển động Phương pháp này sử dụng mô hình nền thích ứng để tăng khả năng phát hiện các chuyển động trong ảnh phức tạp

Trang 6

Giải thuật Σ-Δ cải tiến thay vì tính một nền riêng lẻ, mà tính một tập các nền:  i

t

b 1iK Công thức tính như sau:

1

( , ) ( , ) sgn( ( , ) ( , ))

b x ybx ybx ybx y

Trong đó, b x y t i( , ), i1( , )

t

bx y : giá trị nền tham chiếu thứ i tại thời điểm t, (t-1); 1

( , )

i t

bx y : giá trị nền tham chiếu thứ (i-1) tại thời điểm t ; Giá trị khởi tạo với i=0: 0

t t

Mỗi nền i

t

b được đặc trưng bởi thời gian cập nhật i

Đối với mỗi frame, tính giá trị hiệu tuyệt đối i t( , ) x y và giá trị biến theo thời gian ( , )

i

t x y

v như sau:

Giá trị mô hình nền thích ứng tổng hợp B x y t( , ) được tính:

 

 

1,

1,

( , ) ( , ) ( , )

( , )

i

i t i

i R

t t

i i

i R t

b x y

v x y

B x y

v x y

Với i: giá trị được định nghĩa trước; i: chỉ số tham chiếu; R: tổng số chỉ số i Thực nghiệm đặt R=3,   1, 2, 3: 1, 8, 16

Áp dụng giải thuật Σ-Δ với mô hình nền B x y t( , ) này để xác định đối tượng chuyển động

Đánh giá:

Ưu điểm: Bằng việc sử dụng mô hình nền thích ứng, giải thuật Σ-Δ cải tiến cho phép ta xác

định được chính xác đối tượng trong trường hợp video thu được có nhiều đối tượng chuyển động

Nhược điểm: Giải thuật này đòi hỏi độ phức tạp tính toán lớn

2.5 Giải thuật thống kê khác biệt cơ bản

Giải thuật tính giá trị trung bình từng pixel riêng lẻ của khung video trước đó dựa trên việc

sử dụng giá trị trung bình, độ lệch tiêu chuẩn cũng như sắp xếp mô hình nền Mô hình nền thích ứng được tạo ra thông qua việc xác định giá trị từng pixel xy của mô hình nền xy là giá trị trung bình của các pixel tương ứng từ một tập frame trước đó trong một khoảng thời gian nhất định

1

0

1

( , )

K

k

I x y K

K: số lượng frame đang xét; t: chỉ số của khung video, t = 1 K; I x y t( , ): giá trị frame đến hiện thời thứ t

Với mỗi pixel, một giá trị ngưỡng biểu diễn bằng độ lệch chuẩn xy trong cùng một khoảng thời gian, được tính bằng trung bình độ lệch giữa giá trị của pixel tương ứng trong các khung video trước và xy, công thức tính như sau:

Trang 7

 

1

2

0

1

( , )

K

k

I x y K

Tính giá trị hiệu tuyệt đối của frame video đến và mô hình nền Từ đó ta sẽ xác định mặt nạ nhị phân phát hiện chuyển động D x y t( , ) được tính bởi công thức sau:

t t

( , )

xy xy t

xy xy

I x y

D x y

I x y

 



Ta chọn  là tham số thực nghiệm

NếuD x y t( , )  0, pixel của nền Ngược lại, D x y t( , ) 1 , pixel của đối tượng chuyển động

Đánh giá:

Ưu điểm: Thuật toán đơn giản, tốc độ tính toán nhanh, phát hiện chính xác đối tượng

chuyển động trong trường hợp video đầu vào đơn giản (có một đối tượng chuyển động)

Nhược điểm: Không phát hiện được hết các đối tượng trong trường hợp video đầu vào phức

tạp

2.6 Giải thuật trừ nền trung bình với biến đổi cosine rời rạc

Giải thuật Trừ nền trung bình với biến đối Cosin rời rạc là sự cải tiến của giải thuật Trừ nền trung bình, cho phép mô hình hóa nền thích ứng trong không gian miền biến đổi Cosin rời rạc Mô hình nền thích ứng được mô tả như sau:

1

d    d   d

: Tham số thực nghiệm (như giải thuật trừ nền trung bình); L: Số lượng khối trong một frame; k : Chỉ số khối, k 1, 2, ,L

k

t

d : Biểu thị vector hệ số biến đổi cosin rời rạc của khối pixel thứ k, tại thời điểm t, của khung video đến hiện tại

,

B k

t

d : Biểu thị vector hệ số biến đổi cosin rời rạc nền của khối pixel thứ k, tại thời điểm t, trong miền biến đổi cosin rời rạc

,

1

B k

t

d : Biểu thị vector hệ số biến đổi cosin rời rạc nền trước đó của khối pixel thứ k, tại thời điểm t-1, trong miền biến đổi cosin rời rạc

Giải thuật sử dụng kỹ thuật trừ nền xác định sự khác biệt giữa frame đến và nền tương ứng trong một khối, trong cùng miền biến đổi Cosin rời rạc, ký hiệu k

t

t

 được định nghĩa là khoảng cách Euclide giữa k

t

ddt B k, :

,

k k B k

t dt dt

   , k = 1,2,…, L

Với  là một ngưỡng cho trước, thì nếu:

k

t

  thì khối thứ k này được xác định là nền

k

t

  thì khối thứ k được xác định là khối chuyển động

Như vậy, giải thuật Trung bình liên tục với biến đổi cosin rời rạc đã xác định được ở mức khối của đối tượng chuyển động Từ đây, có thể biến đổi để xác định đối tượng chuyển động

ở mức pixel

Đánh giá:

Trang 8

Giải thuật sử dụng hệ số biến đổi cosin rời rạc ở mức khối pixel để tạo mô hình nền thích ứng Kết quả đưa ra các vùng chứa đối tượng chuyển động với độ chính xác nhất định thông qua quá trình xử lý hai giai đoạn Giai đoạn 1, sử dụng kỹ thuật trừ nền mới trong không gian miền biến đổi cosin rời rạc để xác định toàn bộ hoặc một phần vùng chứa đối tượng chuyển Giai đoạn 2, là xác định những pixel của đối tượng chuyển động trong những khối chứa chuyển động Đặc biệt, giải thuật này sẽ giảm thời gian tính toán khi video đầu vào đã được nén sử dụng phương pháp biến đổi cosin rời rạc

Trang 9

Chương 3

NỘI DUNG CHÍNH CỦA GIẢI THUẬT

3.1 Giới thiệu giải thuật

Những giải thuật cho bài toán phát hiện chuyển động trước đó (Chương 2) còn hạn chế trong nhiều trường hợp, đối với ảnh phức tạp chứa nhiều đối tượng chuyển động, các đối tượng chuyển động với quy luật và vận tốc khác nhau… gặp phải vấn đề không xác định được chính xác toàn bộ các đối tượng chuyển động, thời gian xử lý còn chậm Học viên tìm hiểu, nghiên cứu giải thuật mới nhằm tăng tính chính xác phát hiện chuyển động trong những ảnh phức tạp, đồng thời đưa ra một số giá trị ngưỡng của giải thuật để phù hợp với điều kiện thực

tế đặt ra, bổ sung tính năng xác định những khu vực giám sát trong vùng camera theo dõi Giải thuật gồm ba thành phần chính như sau:

(1) Xây dựng nền tối ưu

(2) Xác định những khối có khả năng chứa đối tượng chuyển động

(3) Xác định đối tượng chuyển động

So sánh với các giải thuật đã được công bố trước đó, giải thuật này xử lý nền nhanh hơn và chính xác hơn, có thể phát hiện nhanh và chính xác hầu như tất cả các đối tượng chuyển động, thích ứng, linh hoạt trong các điều kiện video đầu vào khác nhau

3.2 Nội dung giải thuật

Giải thuật được xây dựng dựa trên 3 modun chính sau:

* Modun Mô hình nền xây dựng mô hình nền tối ưu thông qua việc sử dụng thuật toán so sánh nhanh và chính xác hai nền để tạo ra pixel nền tối ưu cho mô hình nền, những pixel tối

ưu này là những pixel có sự biến đổi về giá trị là ít Việc tạo ra mô hình nền tối ưu là cơ sở cho việc xử lý phát hiện chuyển động trong các bước tiếp theo được nhanh chóng và chính xác

* Modun Cảnh báo chuyển động xác định chính xác những khối pixel chứa đối tượng chuyển động Modun Cảnh báo chuyển động dựa trên phương pháp đánh giá giá trị Entropy của khối và các phép toán hình thái học “co ảnh” và “giãn ảnh” để xác định tất cả các khối chuyển động

* Modun Trích xuất đối tượng kiểm tra tất cả các khối chuyển động Việc kiểm tra phát hiện chuyển động sử dụng giải thuật lựa chọn ngưỡng phù hợp Kết quả của Modun này là xây dựng được mặt nạ nhị phân phát hiện chuyển động, từ đó trích xuất được đối tượng chuyển động

3.2.1 Modun Mô hình nền:

3.2.1.1 Khởi tạo mô hình

Trang 10

Thủ tục khởi tạo mô hình nền thực hiện theo ý tưởng của giải thuật Trừ nền trung bình (Chương 2) sẽ lấy giá trị trung bình của các khung từ 1 – K để khởi tạo nền đầu tiên (với K là

số nguyên)

Với mỗi pixel (x,y), giá trị nền Bt(x,y) được tính như sau:

1

t

Bt(x,y), Bt-1(x,y): Giá trị nền ở thời điểm hiện tại t và trước đó (t-1); It(x,y): Giá trị frame video đến hiện thời ; t: Chỉ số frame của chuỗi video, t < K; K: Số frame đầu tiên của chỗi video đầu vào để khởi tạo nền ban đầu Trong thực nghiệm, K=50

Trong phần khởi tạo mô hình nền, ta chỉ quan tâm đến hai kết quả cuối cùng đó là giá trị nền hiện thời Bt(x,y) và frame video đến hiện thời It(x,y) mà không cần phải lưu trữ những giá trị trung gian, do đó giảm được các biến nhớ và dung lượng bộ nhớ, giúp cho việc xử lý, tính toán nhanh hơn

3.2.1.2 Lựa chọn nền tối ưu

Lựa chọn nền tối ưu gồm 3 thành phần chính sau:

(1) Xác định những pixel thuộc ứng cử viên nền sử dụng thuật toán so sánh nhanh giữa những pixel của hai frame liên tiếp

(2) Xác định ứng cử viên nền sử dụng modun huấn luyện tín hiệu ổn định đối với pixel thuộc ứng cử viên nền

(3) Xác định pixel nền tối ưu theo thủ tục so sánh chính xác Đây là những pixel có giá trị không thay đổi giữa những frame trước đó Tập hợp những pixel này tạo nên nền tối ưu

Mô tả các thuật toán, thủ tục:

* Thuật toán so sánh nhanh: sử dụng để tìm kiếm nhanh số lượng lớn các fixel của nền ứng

cử viên Thuật toán này tiến hành tìm kiếm và so sánh giá trị những pixel tương ứng của 2 frame liên tiếp nhau It(x,y) và It-1(x,y) Nếu giá trị của 2 pixel tương ứng bằng nhau thì ta sẽ tập hợp thành pixel của ứng cử viên nền: Mt(x,y)

* Modun huấn luyện tín hiệu ổn định: Tất cả các pixel thuộc tập các ứng viên nền Mt(x,y)

sẽ được xử lý thông quan modun huấn luyện tín hiệu ổn định Kết quả của modun huấn luyện tín hiệu ổn định nhằm làm nổi bật những pixel ổn định này: Việc “huấn luyện” được mô tả bằng công thức tổng quát sau:

1 1

( , ) , if ( , ) ( , ) ( , )

( , ) , if ( , ) ( , )

t

M x y p I x y M x y

M x y

M x y p I x y M x y

Mt(x,y), Mt-1(x,y): frame ứng cử viên nền hiện tại và trước đó; It(x,y): frame video đến; p: Giá trị huấn luyện, thực nghiệm đặt p = 1

Ứng cử viên nền khởi tạo: M0(x,y) = I0(x,y)

Ngày đăng: 24/09/2013, 08:27

HÌNH ẢNH LIÊN QUAN

Sơ đồ khối hệ thống phát hiện và giám sát đối tượng chuyển động - Phát hiện đột nhập bằng camera theo dõi
Sơ đồ kh ối hệ thống phát hiện và giám sát đối tượng chuyển động (Trang 3)

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w