The main contents of the chapter consist of the following: Expressing boolean functions; relationships between algebraic equations, symbols, and truth tables; simplification of boolean expressions; minterms and maxterms; AND-OR representations.
Trang 1Lecture 5
More Boolean Algebra
A B
Trang 2w
° Expressing Boolean functions
° Relationships between algebraic equations, symbols, and truth tables
° Simplification of Boolean expressions
° Minterms and Maxterms
° AND-OR representations
• Product of sums
• Sum of products
Trang 3Axioms and Graphical representation of DeMorgan's Law
Y X Y X
14B)
Y X Y
X
14A)
Y X Y X X
13D)
Y X Y X X
13C)
Y X XY X
13B)
Y X Y X X
13A)
YZ YW
XZ XW
Z W Y X
12B)
XZ XY
Z Y X
12A)
Z Y X Z
Y X
11B)
Z XY YZ
10A)
Commutative Law
Associative Law
Distributiv
e Law
Consensus Theorem
Trang 6Simplification Using the Laws
Trang 7x y z
z’ y+z’ F = x(y+z’)
Trang 8x y z
G = xy +yz
yz xy
We will learn how to transition between equation, symbols, and truth table.
yz 0 0 0 1 0 0 0 1
G 0 0 0 1 0 0 1 1
Trang 9Expression
Trang 10Truth Table to
Expression
° Converting a truth table to an expression
• Each row with output of 1 becomes a product term
• Sum product terms together.
xyz + xyz’ + x’yz
Any Boolean Expression can be represented in sum of products form!
Trang 11Equivalent Representations of Circuits
° All three formats are equivalent
° Number of 1’s in truth table output column equals AND
terms for Sum-of-Products (SOP)
z 0 1 0 1 0 1 0 1
G 0 0 0 1 0 0 1 1
G = xyz + xyz’ + x’yz
x x
Trang 12° Step 1: Use Theorem 1 ( a + a = a )
• So xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz
° Step 2: Use distributive rule a(b + c) = ab + ac
• So xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’)
° Step 3: Use Postulate 3 ( a + a’ = 1)
• So xy(z + z’) + yz(x + x’) = xy.1 + yz.1
° Step 4: Use Postulate 2 ( a 1 = a )
• So xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz
G = xyz + xyz’ + x’yz
Trang 13Reducing Boolean Expressions
xy + yz two AND (Gate) operations and one OR (Gate)
y z
Trang 14Reduced Hardware
Implementation
° Reduced equation requires less hardware!
° Same function implemented!
z 0 1 0 1 0 1 0 1
G 0 0 0 1 0 0 1 1
G = xyz + xyz’ + x’yz = xy + yz
G
x x
x x
Trang 15Minterms and Maxterms
° Each variable in a Boolean expression is a literal
° Boolean variables can appear in normal ( x ) or complement form ( x’ )
° Each AND combination of terms is a minterm
° Each OR combination of terms is a maxterm
Trang 16Representing Functions with
Minterms
° Minterm number same as row position in truth table
(starting from top from 0)
° Shorthand way to represent functions
z 0 1 0 1 0 1 0 1
G 0 0 0 1 0 0 1 1
G = xyz + xyz’ + x’yz
Trang 17Complementing
Functions
° Minterm number same as row position in truth table
(starting from top from 0)
° Shorthand way to represent functions
z 0 1 0 1 0 1 0 1
G 0 0 0 1 0 0 1 1
G = xyz + xyz’ + x’yz
G’
1 1 1 0 1 1 0 0
Can we find a simpler representation?
Trang 20Conversion Between Canonical
G 0 0 0 1 0 0 1 1
G = xyz + xyz’ + x’yz
G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’)
Trang 22Simplification Using Boolean Algebra.
Example 1: AB + A(B+C) +B(B+C) =
Solution:
AB + A(B+C) +B(B+C) = AB+AB+AC+BB+BC
= AB+AB+AC+B+BC = AB+AC+B+BC
= AB+AC+B = B+AC
Boolean Algebra and Logic Simplification
Trang 23Simplification Using Boolean Algebra.
Gate Network for Example 1:
ABAB
Boolean Algebra and Logic Simplification
Trang 24Simplification Using Boolean Algebra.
Gate Network for Example 1:
B+AC
C
B+AC
ACA
B
Boolean Algebra and Logic Simplification
Trang 25Simplification Using Boolean Algebra.
Gate Network for Example 1:
Trang 26Simplification Using Boolean Algebra.
Trang 27Simplification Using Boolean Algebra.
Example 2:
Solution:
C B A BD
B A C
B A C
B A BD
C B
[
C B A D
A C
B
(
C B
A C
B
(
C B
A C
Trang 28C B A CC
B
A
C B A C
C
B
C B
Simplification Using Boolean Algebra.
Example 2:
Solution:
C B
A C
Trang 29Simplification Using Boolean Algebra.
Example 3:
Using Boolean algebra techniques, simplify the following expression:
Boolean Algebra and Logic Simplification
ABC + ABC + ABC + ABC + ABC + ABC
ABC + ABC + ABC + ABC + ABC + ABC
BC(A + A) + BC(A + A) + AC(B + B)
BC + BC + AC
C(B + A) + BC
Trang 30Simplification Using Boolean Algebra.
Example 4:
Using Boolean algebra techniques, simplify the following expression:
C B A AC
Trang 31Boolean Algebra and Logic Simplification
Example 4:
Simplify the following Boolean
functions T1 and T2 to a minimum
number of literals:
Trang 32° Truth table, circuit, and boolean expression
formats are equivalent
° Easy to translate truth table to SOP and POS
° Easiest way to understand: Do examples!
° Next time: More logic gates!