1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital logic design - Lecture 5: More boolean algebra

32 41 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 709,99 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The main contents of the chapter consist of the following: Expressing boolean functions; relationships between algebraic equations, symbols, and truth tables; simplification of boolean expressions; minterms and maxterms; AND-OR representations.

Trang 1

Lecture 5

More Boolean Algebra

A B

Trang 2

w

° Expressing Boolean functions

° Relationships between algebraic equations, symbols, and truth tables

° Simplification of Boolean expressions

° Minterms and Maxterms

° AND-OR representations

• Product of sums

• Sum of products

Trang 3

Axioms and Graphical representation of DeMorgan's Law

Y X Y X

14B)

Y X Y

X

14A)

Y X Y X X

13D)

Y X Y X X

13C)

Y X XY X

13B)

Y X Y X X

13A)

YZ YW

XZ XW

Z W Y X

12B)

XZ XY

Z Y X

12A)

Z Y X Z

Y X

11B)

Z XY YZ

10A)

Commutative Law

Associative Law

Distributiv

e Law

Consensus Theorem

Trang 6

Simplification Using the Laws

Trang 7

x y z

z’ y+z’ F = x(y+z’)

Trang 8

x y z

G = xy +yz

yz xy

We will learn how to transition between equation, symbols, and truth table.

yz 0 0 0 1 0 0 0 1

G 0 0 0 1 0 0 1 1

Trang 9

Expression

Trang 10

Truth Table to

Expression

° Converting a truth table to an expression

• Each row with output of 1 becomes a product term

• Sum product terms together.

xyz + xyz’ + x’yz

Any Boolean Expression can be represented in sum of products form!

Trang 11

Equivalent Representations of Circuits

° All three formats are equivalent

° Number of 1’s in truth table output column equals AND

terms for Sum-of-Products (SOP)

z 0 1 0 1 0 1 0 1

G 0 0 0 1 0 0 1 1

G = xyz + xyz’ + x’yz

x x

Trang 12

° Step 1: Use Theorem 1 ( a + a = a )

• So xyz + xyz’ + x’yz = xyz + xyz + xyz’ + x’yz

° Step 2: Use distributive rule a(b + c) = ab + ac

• So xyz + xyz + xyz’ + x’yz = xy(z + z’) + yz(x + x’)

° Step 3: Use Postulate 3 ( a + a’ = 1)

• So xy(z + z’) + yz(x + x’) = xy.1 + yz.1

° Step 4: Use Postulate 2 ( a 1 = a )

• So xy.1 + yz.1 = xy + yz = xyz + xyz’ + x’yz

G = xyz + xyz’ + x’yz

Trang 13

Reducing Boolean Expressions

xy + yz two AND (Gate) operations and one OR (Gate)

y z

Trang 14

Reduced Hardware

Implementation

° Reduced equation requires less hardware!

° Same function implemented!

z 0 1 0 1 0 1 0 1

G 0 0 0 1 0 0 1 1

G = xyz + xyz’ + x’yz = xy + yz

G

x x

x x

Trang 15

Minterms and Maxterms

° Each variable in a Boolean expression is a literal

° Boolean variables can appear in normal ( x ) or complement form ( x’ )

° Each AND combination of terms is a minterm

° Each OR combination of terms is a maxterm

Trang 16

Representing Functions with

Minterms

° Minterm number same as row position in truth table

(starting from top from 0)

° Shorthand way to represent functions

z 0 1 0 1 0 1 0 1

G 0 0 0 1 0 0 1 1

G = xyz + xyz’ + x’yz

Trang 17

Complementing

Functions

° Minterm number same as row position in truth table

(starting from top from 0)

° Shorthand way to represent functions

z 0 1 0 1 0 1 0 1

G 0 0 0 1 0 0 1 1

G = xyz + xyz’ + x’yz

G’

1 1 1 0 1 1 0 0

Can we find a simpler representation?

Trang 20

Conversion Between Canonical

G 0 0 0 1 0 0 1 1

G = xyz + xyz’ + x’yz

G = (x+y+z)(x+y+z’)(x+y’+z)(x’+y+z)(x’+y+z’)

Trang 22

Simplification Using Boolean Algebra.

Example 1: AB + A(B+C) +B(B+C) =

Solution:

AB + A(B+C) +B(B+C) = AB+AB+AC+BB+BC

= AB+AB+AC+B+BC = AB+AC+B+BC

= AB+AC+B = B+AC

Boolean Algebra and Logic Simplification

Trang 23

Simplification Using Boolean Algebra.

Gate Network for Example 1:

ABAB

Boolean Algebra and Logic Simplification

Trang 24

Simplification Using Boolean Algebra.

Gate Network for Example 1:

B+AC

C

B+AC

ACA

B

Boolean Algebra and Logic Simplification

Trang 25

Simplification Using Boolean Algebra.

Gate Network for Example 1:

Trang 26

Simplification Using Boolean Algebra.

Trang 27

Simplification Using Boolean Algebra.

Example 2:

Solution:

C B A BD

B A C

B A C

B A BD

C B

[

C B A D

A C

B

(

C B

A C

B

(

C B

A C

Trang 28

C B A CC

B

A

C B A C

C

B

C B

Simplification Using Boolean Algebra.

Example 2:

Solution:

C B

A C

Trang 29

Simplification Using Boolean Algebra.

Example 3:

Using Boolean algebra techniques, simplify the following expression:

Boolean Algebra and Logic Simplification

ABC + ABC + ABC + ABC + ABC + ABC

ABC + ABC + ABC + ABC + ABC + ABC

BC(A + A) + BC(A + A) + AC(B + B)

BC + BC + AC

C(B + A) + BC

Trang 30

Simplification Using Boolean Algebra.

Example 4:

Using Boolean algebra techniques, simplify the following expression:

C B A AC

Trang 31

Boolean Algebra and Logic Simplification

Example 4:

Simplify the following Boolean

functions T1 and T2 to a minimum

number of literals:

Trang 32

° Truth table, circuit, and boolean expression

formats are equivalent

° Easy to translate truth table to SOP and POS

° Easiest way to understand: Do examples!

° Next time: More logic gates!

Ngày đăng: 12/02/2020, 15:12

TỪ KHÓA LIÊN QUAN