1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Digital logic design - Lecture 11: Combinational design procedure

35 49 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 35
Dung lượng 564,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

The main contents of the chapter consist of the following: Design digital circuit from specification, digital inputs and outputs known, need to determine logic that can transform data, start in truth table form, create k-map for each output based on function of inputs, determine minimized sum-of-product representation, draw circuit diagram.

Trang 1

Lecture 11

Combinational Design Procedure

Trang 2

w

° Design digital circuit from specification

° Digital inputs and outputs known

• Need to determine logic that can transform data

° Start in truth table form

° Create K-map for each output based on function of

inputs

° Determine minimized sum-of-product representation

° Draw circuit diagram

Trang 3

Design Procedure (Mano)

Design a circuit from a specification.

1 Determine number of required inputs and

outputs.

2 Derive truth table

3 Obtain simplified Boolean functions

4 Draw logic diagram and verify correctness

A 0 0 0 0 1 1 1

B 0 0 1 1 0 0 1

C 0 1 0 1 0 1 0

R 0 0 0 0 0 0 0

S 0 1 1 1 1 1 1

S = A + B + C

R = ABC

Trang 4

Previously, we have learned…

° Boolean algebra can be used to simplify

expressions, but not obvious:

• how to proceed at each step, or

• if solution reached is minimal.

° Have seen five ways to represent a function:

Trang 5

Combinational logic design

° Use multiple representations of logic functions

° Use graphical representation to assist in

simplification of function

° Use concept of “don’t care” conditions.

° Example - encoding BCD to seven segment display.

° Similar to approach used by designers in the field

Trang 6

BCD to Seven Segment Display

° Used to display binary coded decimal (BCD)

numbers using seven illuminated segments.

° BCD uses 0’s and 1’s to represent decimal digits 0 -

9 Need four bits to represent required 10 digits.

° Binary coded decimal (BCD) represents each

decimal digit with four bits

a

bc

ge

f

0 0 0 1 8

1 1 1 0 7

0 1 0 0 2

1 0 0 0 1

0 0 0 0 0

Trang 7

BCD to seven segment display

ge

df

° List the segments that should be illuminated for

each digit.

Trang 8

BCD to seven segment display

.011111

00

19

.11111

00

01

8

.00111

111

0

7

.11011

01

00

2

.00110

100

0

1

.11111

00

00

0

.edc

ba

zyx

w

Dec

° Derive the truth table for the circuit.

° Each output column in one circuit.

Inputs Outputs

Trang 9

BCD to seven segment display

1 0

10

1 1           

1 1

11

yzwx

10110100

1011

0100

For segment “a” :

Note: Have only filled in ten 

squares, corresponding to the ten numerical digits we wish to represent

° Find minimal sum-of-products representation for

each output

Trang 10

Don’t care conditions (BCD display)

1 0

10

X X X X

1 1

11

yzwx

10110100

1011

0100

For segment “a” :

Put in “X” (don’t care), and interpret as either 1 or 0 as 

desired …

° Fill in don’t cares for undefined outputs.

• Note that these combinations of inputs should never happen

° Leads to a reduced implementation

Trang 11

Don’t care conditions (BCD display)

1 1 X X

X X X X

1 1

11

yzwx

10110100

1011

0100

° Circle biggest group of 1’s and Don’t Cares.

° Leads to a reduced implementation

Trang 12

Don’t care conditions (BCD display)

1 1 X X

X X X X

1 1

11

yzwx

10110100

1011

0100

° Circle biggest group of 1’s and Don’t Cares.

° Leads to a reduced implementation

Trang 13

Don’t care conditions (BCD display)

For segment “a” :

z x

Fa3

1 0

10

1 1 X X

X X X X

1 1

11

yzwx

0100

xz

Fa4

1 0

10

1 1 X X

X X X X

1 1

11

yzwx

10110100

1011

0100

° Circle biggest group of 1’s and Don’t Cares.

° All 1’s should be covered by at least one implicant

Trang 14

Don’t care conditions (BCD display)

For segment “a” :

xz z

x w

y

F

1 0

10

1 1 X X

X X X X

1 1

11

yzwx

10110100

1011

0100

° Put all the terms together

° Generate the circuit

Trang 16

BCD to seven segment display

.011111

00

19

.11111

00

01

8

.00111

111

0

7

.11011

01

00

2

.00110

100

0

1

.11111

00

00

0

.edc

ba

zyx

w

Dec

° Derive the truth table for the circuit.

° Each output column in one circuit.

Inputs Outputs

Trang 17

BCD to seven segment display

1 1

01

1 1           

1 0

11

yzwx

10110100

1011

0100

For segment “b” :

° Find minimal sum-of-products representation for

each output

Trang 18

1 1

01

1 1           

1 0

11

yzwx

10110100

1011

0100

For segment “b” :

X X X X

X X

Fb1 = W

Trang 19

1 1

01

1 1           

1 0

11

yzwx

10110100

1011

0100

For segment “b” :

X X X X

X X

Fb2 =Y Z

Trang 20

1 1

01

1 1           

1 0

11

yzwx

10110100

1011

0100

For segment “b” :

X X X X

X X

Fb3 =W X

Trang 21

1 1

01

1 1           

1 0

11

yzwx

10110100

1011

0100

For segment “b” :

X X X X

X X

Fb4 =YZ

Trang 22

1 1

01

1 1           

1 0

11

yzwx

10110100

1011

0100

Trang 23

BCD-to-Excess-3 Code converter

° BCD is a code for the decimal digits 0-9

° Excess-3 is also a code for the decimal digits

Trang 25

Formulation of BCD-to-Excess-3

° Excess-3 code is easily formed by adding a binary

3 to the binary or BCD for the digit.

° There are 16 possible inputs for both BCD and

Excess-3.

° It can be assumed that only valid BCD inputs will

appear so the six combinations not used can be

treated as don’t cares.

Trang 26

Optimization – BCD-to-Excess-3

° Lay out K-maps for each output, W X Y Z

° A step in the digital circuit design process.

Trang 27

Placing 1 on K-maps

° Where are the minterms located on a K-Map?

Trang 29

Minimize K-Maps

° W minimization

° Find W = A + BC + BD

Trang 30

Minimize K-Maps

° X minimization

° Find X = BC’D’+B’C+B’D

Trang 31

Minimize K-Maps

° Y minimization

° Find Y = CD + C’D’

Trang 32

Minimize K-Maps

° Z minimization

° Find Z = D’

Trang 33

Two level circuit implementation

Trang 34

Create the digital circuit

° Implementing the

second set of

equations where

T=C+D results in a

lower gate count.

° This gate has a fanout

of 3

Trang 35

° Need to formulate circuits from problem descriptions

1 Determine number of inputs and outputs

2 Determine truth table format

3 Determine K-map

4 Determine minimal SOP

o There may be multiple outputs per design

o Solve each output separately

o Current approach doesn’t have memory

o This will be covered next week

Ngày đăng: 12/02/2020, 14:29

TỪ KHÓA LIÊN QUAN