1. Trang chủ
  2. » Giáo án - Bài giảng

Similar Triangles 2

9 221 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Similar Triangles 2
Trường học Unknown University
Chuyên ngành Mathematics
Thể loại Lecture notes
Thành phố Unknown City
Định dạng
Số trang 9
Dung lượng 255 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Similar triangles are triangles that have the same shape but not necessarily the same size... PPP Similarity Theorem  3 pairs of proportional sides Six of those statements are true as a

Trang 2

Similar triangles are triangles that have the same

shape but not necessarily the same size

A

C

B

D

F

E

When we say that triangles are similar there are several repercussions that come from it

∠A ≅ ∠D

∠B ≅ ∠E

∠C ≅ ∠F

AB

DE BCEF ACDF

= =

Trang 3

1 PPP Similarity Theorem

 3 pairs of proportional sides

Six of those statements are true as a result of the

similarity of the two triangles However, if we need to prove that a pair of triangles are similar how many of those statements do we need? Because we are working with triangles and the measure of the angles and sides are dependent on each other We do not need all six There are three special combinations that we can use to prove similarity of triangles

2 PAP Similarity Theorem

 2 pairs of proportional sides and congruent angles between them

3 AA Similarity Theorem

 2 pairs of congruent angles

Trang 4

1 PPP Similarity Theorem

 3 pairs of proportional sides A

E

25

1 4

5 .

DF

m

AB

m = =

25

1 6

9

12 .

FE

m

BC

m = = 10 4 1 25

13 .

DE

m

AC

m = =

5

4 12

9.6

.4

Trang 5

2 PAP Similarity Theorem

 2 pairs of proportional sides and congruent angles between them

G

L

66

0 5

7

LK

m

GH

m = =

66

0 5

10

KJ

m

HI

m = =

7

10.5

70°

70°

m ∠ H = m ∠ K

Trang 6

The PAP Similarity Theorem does not work unless the congruent angles fall between the proportional

sides For example, if we have the situation that is

shown in the diagram below, we cannot state that the triangles are similar We do not have the information that we need

G

L

7

10.5

50°

50° Angles I and J do not fall in between sides GH and HI and sides LK and KJ respectively

Trang 7

3 AA Similarity Theorem

 2 pairs of congruent angles M

Q

70°

70°

50°

50°

m ∠ N = m ∠ R

m ∠ O = m ∠ P ∆ MNO ∼ ∆ QRP

Trang 8

It is possible for two triangles to be similar when

they have 2 pairs of angles given but only one of

those given pairs are congruent

87°

34°

34°

S

T

U

X Y

Z m ∠ T = m ∠ X

mS = 180°- (34° + 87°)

mS = 180°- 121°

m∠ S = 59°

m ∠ S = m ∠ Z

59°

59°

59°

34°

34°

Trang 9

КОНЕЦ τ λο έ σ

fin

ito

la fin

sof

ﻥﺎﻴ ﺎﭙ

fin al

The end

K A T A P U S A N

Ngày đăng: 17/09/2013, 01:10

TỪ KHÓA LIÊN QUAN

w