Ph¬ng tr×nh, bÊt ph¬ng tr×nh mò vµ l«garÝt.
Bµi 1: Gi¶i ph¬ng tr×nh:
a.2x 2− +x 8 =41 3x− b.2x2− −6x 52 =16 2
c.2x +2x 1− +2x 2− =3x −3x 1− +3x 2− d.2 3 5x x 1− x 2− =12
e.(x2 − +x 1)x 12− =1 f.( x x )− 2 x 2− =1
(x− 3) x − +x = (x − 6x+ 9)x + −x
Bµi 2:Gi¶i ph¬ng tr×nh:
a.34x 8+ −4.32x 5+ +27 0= b.22x 6+ +2x 7+ −17 0=
c.(2+ 3)x + −(2 3)x − =4 0 d.2.16x −15.4x − =8 0
e.(3+ 5)x +16(3− 5)x =2x 3+ f.(7 4 3)+ x −3(2− 3)x + =2 0
g.3.16x +2.8x =5.36x h.2.41x +61x =91x
i.82x −23x 3x+ +12 0= j 5x +5x 1+ +5x 2+ =3x +3x 1+ +3x 2+
k (x 1)+ x 3− =1 t, (5 + 24) (x + 5 − 24)x = 10
m,(3 + 5)x+ 16(3 − 5)x = 2x+3 n,(7 + 4 3) (x− 3 2 − 3)x + 2 = 0
Bµi 3:Gi¶i c¸c hÖ ph¬ng tr×nh:
a
x y
3x 2y 3
+
− −
=
x y (x y) 1
+
− −
=
b
2 2 12
x y 5
+ =
+ =
Bµi 4: Gi¶i c¸c bÊt ph¬ng tr×nh sau:
a 9x <3x 26+ b
2x 1 3x 1
2 − ≥2 +
c x2 x
1 5< − <25 d.(x2 − +x 1)x <1
Bµi 5: Gi¶i c¸c bÊt ph¬ng tr×nh sau:
a.3x +9.3−x −10 0< b.5.4x+2.25x −7.10x ≤0
c x 11 1 x
3 + 1 1 3≥
e.25.2x −10x +5x >25 f 9x −3x 2+ >3x −9
Bµi 6: Gi¶i c¸c ph¬ng tr×nh:
a log x log x 65 = 5( + −) log x 25( + ) b log x log x log5 + 25 = 0,2 3
x
log 2x −5x 4+ =2 d.lg(x2 2x 3) lgx 3 0
x 1
+
−
Bµi 7: Gi¶i c¸c ph¬ng tr×nh sau:
Trang 2a 1 2 1
4 lg x 2 lg x+ =
c log0,04x 1+ + log x 3 10,2 + = d.3log 16 4 log x 2 log xx − 16 = 2
e.log 16 log 64 3x2 + 2x = f.lg(lg x) lg(lg x+ 3 − =2) 0
Bµi 8: Gi¶i c¸c hÖ ph¬ng tr×nh:
a lg x lg y 12 2
x y 29
log x log y 1 log 2
x y 5
+ =
Bµi 9: Gi¶i bÊt ph¬ng tr×nh:
8
log x −4x 3+ ≤1 b log x log x 3 03 − 3 − <
3
log log x −5 >0
5
log x −6x 8+ +2 log x 4− <0
3
5 log x log 3
2
log log 3 −9 <1
h 1
3
4x 6
x+ ≥ i log x 32( + ≥ +) 1 log x 12( − )
8
2
2 log (x 2) log (x 3)
3
2
log log x 0
≥
l log5 3x 4.log 5 1+ x > m
2
3 2
x 4x 3
≥ + −
2
2x
log x −5x 6+ <1
p log3x x− 2(3 x− ) >1 r x 6 2
3
x 1
x 2 + − >÷
+
s 2
1 3
1
2+ − > x+
x x
Bµi 10: Gi¶i hÖ bÊt ph¬ng tr×nh:
a
2 2
0
x 16x 64
lg x 7 lg(x 5) 2 lg2
>
( )
x
x 1 lg2 lg 2 1 lg 7.2 12 log x 2 2
+
+ >