1. Trang chủ
  2. » Giáo án - Bài giảng

Tin học 10. Bài 4: Bài toán và thuật toán

8 24,1K 138
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Bài toán và Thuật toán
Trường học Trường Đại Học Sư Phạm Hà Nội
Chuyên ngành Tin học 10
Thể loại Bài giảng
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 8
Dung lượng 3,51 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

KHÁI NIỆM BÀI TOÁN• Là một việc nào đó mà ta muốn máy tính thực hiện để từ thông tin đưa vào Input ta tìm được thông tin ra Output • Ví dụ: – Tìm UCLN của hai số nguyên dương.. Một bài t

Trang 3

1 KHÁI NIỆM BÀI TOÁN

• Là một việc nào đó mà ta muốn máy tính thực hiện để từ thông tin đưa vào (Input) ta tìm được thông tin ra (Output)

• Ví dụ:

– Tìm UCLN của hai số nguyên dương

• Input: Hai số nguyên dương m và n

• Output: UCLN của m và n

– Bài toán nấu cơm

• Input: Gạo, nước

• Output: Cơm đã chín

Một bài toán được tạo bởi 2 thành phần là:

Input (giả thiết), Output (kết luận)

Trang 4

• Thuật toán để giải một bài toán là một dãy hữu hạn các thao tác được sắp xếp theo một trình tự xác định sao cho sau khi thực hiện dãy thao tác ấy, từ Input của bài toán, ta nhận được Output cần tìm.

• Có hai cách để thể hiện thuật toán:

– Liệt kê từng bước

– Vẽ sơ đồ khối

2 KHÁI NIỆM THUẬT TOÁN

Thể hiện thao tác nhập/xuất dữ liệu

Thể hiện thao tác

so sánh

Thể hiện các phép tính toán

Quy định trình tự thực hiện các thao tác

Trang 5

• Ví dụ: Tìm giá trị lớn nhất của một dãy số nguyên có n phần tử

– Input: số nguyên n và các số hạng a1,a2,…an

– Output: số lớn nhất của dãy số

– Ý tưởng:

• Giả sử a1 là lớn nhất, ta cho max nhận giá trị a1

• Lần lượt so sánh max với các số còn lại trong dãy, nếu max<ai thì max nhận giá trị mới là ai

2 KHÁI NIỆM THUẬT TOÁN

Quả này

lớn nhất

Còn phòng

nào không nhỉ

A! còn Quả ở phòng

số 1 lớn nhất

Còn phòng nào không nhỉ

A! còn Waa! Quả này

là lớn nhất.

Còn phòng nào không nhỉ

A! còn Waa! Lớn quá

Quả này lớn nhất

Còn phòng nào không nhỉ

A! còn Quả ở phòng số

4 vẫn lớn nhất

Còn phòng nào không nhỉ

A! Hết rồi

Vậy, quả ở phòng

số 4 là lớn nhất

Trang 6

• Ví dụ: Tìm giá trị lớn nhất của một dãy số nguyên có n phần tử

– Thuật toán:

• Liệt kê:

+ B1: Nhập số nguyên dương n và dãy a1,a2,…an + B2: max:=a1; i:=2; (hoặc max←a1; i←2;)

+ B3: Nếu i>n thì số lớn nhất là max Dừng

+ B4: Nếu ai>max thì max:=ai (hoặc max←ai)

+ B5: i:=i+1 (hoặc i←i+1) quay lại bước 3

2 KHÁI NIỆM THUẬT TOÁN

Trang 7

• Ví dụ: Tìm giá trị lớn nhất của một dãy số nguyên có n phần tử

– Thuật toán:

• Sơ đồ khối: Nhập n, a 1 ,a 2 a n

max:=a 1 ; i:=2

i>n

i:=i+1

F

a i >max

Số lớn nhất

là max Dừng

T

T

F

2 KHÁI NIỆM THUẬT TOÁN

Nhập n, a 1 ,a 2 a n

max:=a 1 ; i:=2

i>n

i:=i+1

F

a i >max

Số lớn nhất

là max Dừng

T

T

F

Nhập n, a 1 ,a 2 a n

max:=a 1 ; i:=2

i>n

i:=i+1

F

a i >max

Số lớn nhất

là max Dừng

T

T

F

3 1 5 7 6

A

1 2 3 4 5

max

3

ai 1 <

3

4

5

6

=

6

~

>

Ngày đăng: 15/09/2013, 00:10

TỪ KHÓA LIÊN QUAN

w