1. Trang chủ
  2. » Giáo Dục - Đào Tạo

GENERALIZATIONS OF SOME REMARKABLE INEQUALITIES

5 22 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 146,44 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

In this paper, we present a generalization of Mitrinovi´c’s inequality for polygons, and triangles, a generalization of J.. Radon’s inequality and a generalization of Nesbitt’s inequalit

Trang 1

2013, Vol XVI, 1, pp 1–5

GENERALIZATIONS OF SOME REMARKABLE INEQUALITIES

D.M Bˇatinet¸u-Giurgiu, Neculai Stanciu Abstract In this paper, we present a generalization of Mitrinovi´c’s inequality for polygons, and triangles, a generalization of J Radon’s inequality and a generalization

of Nesbitt’s inequality The main tool in the proofs is the inequality of Jensen.

MathEduc Subject Classification: H34

MSC Subject Classification: 97H30

Key words and phrases: Jensen inequality; Mitrinovi´c inequality; J Radon

in-equality; Bergstr¨ om inequality; Nesbitt inequality.

1 Generalizations of Mitrinovi´c’s inequality for convex polygons and triangles

If A1A2 An, n > 3 is a convex polygon, and M ∈ int(A1A2 An ), with

prA k A k+1 M = Tk ∈ [AkAk+1 ] for k ∈ {1, 2, , n}, A n+1 = A1, then

n

X

k=1

AkAk+1

M Tk > 2n tan

π

n . Proof We first prove the following

Lemma Let A, B, A 6= B be points in the plane and M / ∈ AB, T = pr AB M Then

AB

M T = tan u + tan v, where u = µ(∠AM T ), v = µ(∠T M B) are the measures of the angles ∠AM T and

∠T M B.

Proof of the Lemma We have the following cases:

i) T ∈ (AB) Then tan u = AT

M T and tan v =

BT

M T , hence tan u + tan v =

AB

M T.

ii) T ≡ A Then tan u = AT

M T =

AA

M T = 0 and tan v =

BT

M T , hence tan u +

tan v = AB

M T Similarly if T ≡ B.

From Lemma, we have A k A k+1

M Tk = tan u k + tan v k , for k = 1, n, where u k = µ(∠AkM Tk ), v k = µ(∠T k M Ak+1) It follows that

n

X

k=1

AkAk+1

M Tk =

n

X

k=1

(tan u k + tan v k ).

Trang 2

Since the function f : [0, π/2) → [0, +∞), f (x) = tan x is convex on [0, π/2), we

can apply Jensen’s inequality and obtain that

n

X

k=1

Ak Ak+1

M T k > 2n tan

µ 1

2n

n

X

k=1

(u k + v k)

.

Since,Pn k=1 (u k + v k ) = 2π, we deduce that

n

X

k=1

Ak Ak+1

M Tk > 2n tan

2π 2n = 2n tan

π

n ,

and we are done

Remark 1.1 If A1A2 An is circumscribed about the circle C(I; r) and

M ≡ I, we have M Tk = r, k = 1, n, and the obtained inequality becomes

1

r

Pn

k=1 AkAk+1=2s

r > 2n tan

π

n, wherefrom,

n .

The inequality (1) is a generalization of Mitrinovi´c’s inequality for triangles

Remark 1.2 If A1A2A3 is a triangle, then the obtained inequality becomes

A1A2

M T1 +A2A3

M T2 +A3A1

M T3 > 6 tanπ

3 = 6

3.

For M ≡ I, we obtain (M) For more results see [1].

2 A generalization of J Radon’s inequality

In what follows, we denote R+= [0, +∞) and R ∗

+= (0, +∞).

Let a, b, c, d, xk, yk ∈ R ∗

+, k = 1, n and Xn = Pn k=1 xk, Yn = Pn k=1 If

m, p, q, s ∈ R+, r ∈ [1, +∞) are such that cY s

n > d max 16k6n y s

k , k = 1, n, then

(2)

n

X

k=1

(aX p

n + bx q k)m+1 x r(m+1) k

(cY s

n − dy s)m y m

k

> (an

q X p+r

n + bX q+r

n )m+1

(cn s − d) m Y n m(s+1)

n (m+1)(q+r−1)−ms Proof Denote uk = (aX p

n +bx q k )x r , v k = (cY s

n −dy s )y k , k = 1, n, V n=Pn k=1 vk

and the left-hand side of (2) becomes

n

X

k=1

u m+1 k

v m k

=

n

X

k=1 vk

µ

uk vk

m+1

= V n

n

X

k=1

vk Vn

µ

uk vk

m+1

Since the function f : R ∗

+ → R ∗

+, f (x) = x m+1is convex, we use Jensen’s inequality and we obtain that

n

X

k=1

vk

Vn f

µ

uk vk

> f

µXn

k=1

vk

Vn ·

uk vk

= f

µXn

k=1

uk Vn

V n m+1

µXn

k=1 uk

m+1

.

Trang 3

n

X

k=1

u m+1 k

v m k

> Vn

V m+1 n

µXn k=1 uk

m+1

= 1

V m n

µXn k=1 uk

m+1 ,

i.e.,

n

X

k=1

(aX p

n + bx q k)m+1 x r(m+1) k

(cY s

n − dy s

k)m y m k

>

Ã

n

P

k=1

(aX p

n + bx q k )x r

k

´m+1

³Pn

k=1

(cY s

n − dy s

k )y k

´m

=

³

aX p

n n

P

k=1

x r + b Pn

k=1

x q+r k ´m+1

³

cY s

n n

P

k=1

yk − dPn k=1

y s+1 k

´m =

³

aX p n n

P

k=1

x r + b Pn

k=1

x q+r k ´m+1

³

cY n s+1 − dPn

k=1

y s+1 k

´m

Since the functions g, h, k : R ∗

+ → R ∗

+, g(x) = x r , h(x) = x q+r , k(y) = y s+1 are convex, also by Jensen’s inequality, we have:

n

X

k=1

x r =

n

X

k=1 g(xk ) > ng

µ 1

n

n

X

k=1 xk

= n · X

r n

n r = X

r n

n r−1 , n

X

k=1

x q+r k =

n

X

k=1 h(xk ) > nh

µ 1

n

n

X

k=1 xk

= n · X

q+r n

n q+r = X

q+r n

n q+r−1 , n

X

i=1

y s+1

n

X

i=1 k(yi ) > nk

µ 1

n

n

X

i=1 yi

= n · Y

s+1 n

n s+1 = Y

s+1 n

n s

Then, we deduce that

n

X

k=1

(aX p

n + bx q k)m+1 x r(m+1) k

(cY s

n − dy s

k)m y m k

>

³

a · X n p+r

n r−1 + b · X n q+r

n q+r−1

´m+1

³

cY n s+1 − dY

s+1 n

n s

´m

=(an

q X p+r

n + bX q+r

n )m+1

(cn s − d) m Y n m(s+1)

ms

m (m+1)(q+r−1)

=(an

q X p+r

n + bX q+r

n )m+1

(cn s − d) m Y n m(s+1)

n (m+1)(q+r−1)−ms ,

and we are done

Remark 2.1 If p = q = s = 0 then (2) becomes

n

X

k=1

(a + b) m+1 x r(m+1) k

(c − d) m y m

k

>(a + b)

m+1 X n r(m+1)

(c − d) m Y m

n

n (m+1)(r−1) ,

i.e.,

(20)

n

X

k=1

x r(m+1) k

y m k

> X

r(m+1) n

Y m

n n (m+1)(r−1)

Trang 4

If we consider r = 1 then by (2 0) we obtain

(R)

n

X

k=1

x m+1 k

y m k

> X

m+1 n

Y m n ,

i.e., just the inequality of J Radon (see, e.g., [2]), with equality if and only if there

exists t ∈ R ∗

+ such that x k = ty k , k = 1, n.

Remark 2.2 If m = 1 then (2) becomes

(200)

n

X

k=1

(aX p

n + bx q k)2x 2r

k

(cY s

n − dy s

k )y k

> (an q X n p+r + bX q+r

n )2

(cn s − d)Y n s+1

n 2(q+r−1)−s

If we take p = q = s = 0, r = 1 then by (2 00) we obtain

(B)

n

X

k=1

x2

k

yk >

X2

n

Yn .

But, that is just the inequality of H Bergstr¨om

3 A generalization of Nesbitt’s inequality

If a ∈ R+, b, c, d, xk ∈ R ∗

+, k = 1, n, Xn = Pn k=1 xk , m ∈ [1, +∞) and

cX m

n > d max 16k6n x m

k , then

(OG)

n

X

k=1

aXn + bx k

cX m

n − dx m k

>(an + b)n

m

cn m − d X

1−m

n

Proof We have

U n=

n

X

k=1

aXn + bx k

cX m

n − dx m k

=

n

X

k=1

(aX n + bx k)2

(aX n + bx k )(cX m

n − dx m

k)

=

n

X

k=1

(aX n + bx k)2

acX m+1

n − adXnx m

k + bcX m

n xk − bdx m+1

k ,

where we apply H Bergstr¨om inequality (B) and we deduce that

Un >

³Pn k=1

(aX n + bx k)

´2

acnX m+1

n − adXn Pn

k=1

x m

k + bcX m

n n

P

k=1

xk − bdPn

k=1

x m+1 k

= (anX n + bX n)2

(acn + bc)X n m+1 − adXn Pn

k=1

x m

k − bdPn k=1

x m+1 k

Using convexity of the functions f, g : R ∗

+ → R ∗

+, f (x) = x m , g(x) = x m+1, by Jensen’s inequality we have:

n

X

k=1

x m

k > X

m n

n m−1 and

n

X

k=1

x m+1

k > X

m+1 n

n m ,

Trang 5

and we obtain that

Un > (an + b)

2X2

n

(acn + bc)X m+1

n − adX n m+1

n m−1 − bdX n m+1

n m

= (an + b)

2n m acn m+1 + bcn m − adn − bd X

1−m n

= (an + b)

2n m

(an + b)(cn m − d) X

1−m

n = (an + b)n

m

cn m − d X

1−m

n ,

which completes the proof

Remark 3.1 If a = 0 and b = c = d = m = 1 then we obtain the Nesbitt’s inequality for n variables, i.e.,

(N)

n

X

k=1

xk

Xn − xk >

n

n − 1 .

If we take n = 3 then by (N) we obtain

x1

x2+ x3

+ x2

x3+ x1

+ x3

x1+ x2

> 3

2, i.e., Problem 15114, proposed by A.M Nesbitt to Educational Times 3 (1903), 37–38

Remark 3.2 A generalization of (OG) was published in [3], i.e., if a, m ∈ R+,

b, c, d, x k ∈ R ∗

+, k = 1, n, X n = Pn

k=1

x k , p ∈ [1, +∞), and cX m

n > d max 16k6n x m

k, then

(AMM)

n

X

k=1

aXn + bx k

(cX m

n − dx m

k)p >(an + b)n

mp

(cn m − d) p X 1−mp

Remark 3.3 A generalization of (AMM) appeared in [4], i.e., if n ∈ N ∗ \ {1},

a ∈ R+, b, c, d, x k ∈ R ∗

+, k = 1, n, X n= Pn

k=1

xk , m, p, r, s ∈ [1, +∞), such that

cX m

n > d max 16k6n x m

k, then

n

X

k=1

(aX r

n + bx r

k)s

(cX m

n − dx m

k)p > (an

r + b) s

(cn m − d) p n mp−rs+1 X rs−mp

REFERENCES

[1] D.M Bˇatinet¸u-Giurgiu, N Stanciu, Inegalitˇ at¸i geometrice n poligoane convexe, de tip Berg-str¨ om-Mitrinovi´c, Recreat¸ii Matematice, 2 (2011), 112–115.

[2] D.M Bˇatinet¸u-Giurgiu, Aplicat¸ii la inegalitatea lui J Radon, Gazeta Matematicˇa – seria B, 7-8-9 (2010), 359–362.

[3] D.M Bˇatinet¸u-Giurgiu, N Stanciu, Problem 11634, The American Mathematical Monthly,

119 (March 2012), 248.

[4] D.M Bˇatinet¸u-Giurgiu, N Stanciu, Nuevas generalizaciones y aplicaciones de la desigualdad

de Nesbitt, Revista Escolar de la Olimpiada Iberoamericana de Matematica 47 (nov 2012–

feb 2013).

“Matei Basarab” National College, Bucharest, Romania

“George Emil Palade” Secondary School, Buzˇ au, Romania

E-mail: stanciuneculai@yahoo.com

Ngày đăng: 09/10/2019, 23:06

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w