Kiểm tra bài cũ: Phát biểu công thức tính diện tích hình thang, công thức tính diện tích hình bình hành?. * Kiến thức trọng tâm: 1... DIÖN TÝCH H×NH THoi1... Cách tính diện tích của một
Trang 2Kiểm tra bài cũ:
Phát biểu công thức tính diện tích hình thang, công thức tính diện tích hình bình hành?
* Kiến thức trọng tâm:
1 Công thức tính diện tích hình thang: b
a
S = 1 2 (a + b).h
a
h
S = a.h
h
* Cho hình thoi ABCD, để tính diện tích của hình thoi
ABCD ta có thể sử dụng công thức nào trong 2 công
thức trên?
a
h
S = a.h
Trang 3TiÕt 34:
DIÖN TÝCH H×NH THoi TiÕt
34:
Trang 4DIÖN TÝCH H×NH THoi
1 C¸ch tÝnh diÖn tÝch
cña mét tø gi¸c cã 2 ®
êng chÐo vu«ng gãc:
1 C¸ch tÝnh diÖn tÝch cña mét tø gi¸c cã 2 ®êng chÐo vu«ng gãc:
H·y tÝnh diÖn tÝch
tø gi¸c ABCD theo
AC, BD, biÕt
AC ⊥ BD t¹i H
B
H A
SADC = ?
D
Gîi ý:
SABC = ?
SABCD = ?
* KÕt luËn: DiÖn tÝch cña tø gi¸c cã hai ®êng chÐo vu«ng gãc b»ng nöa tÝch hai ®êng chÐo
Trang 5Tiết 33:
DIệN TíCH HìNH THoi
1 Cách tính diện tích
của một tứ giác có 2 đư
ờng chéo vông góc:
2 Công thức tính diện
tích hình thoi:
2 Công thức tính diện tích hình thoi:
Qua phần 1 hãy phát biểu công thức tính diện tích hình thoi? Giải thích?
* Diện tích hình thoi bằng nửa tích hai đường chéo:
S = 1
2 d1.d2
d1
d2
* Kết luận: Có hai cách tính diện tích hình thoi:
a, S = a.h với a: cạnh; h chiều cao tương ứng
S = 1
2 d1.d2
b, với d1, d2 là hai đường chéo
* Bài tập:
Trang 6DIệN TíCH HìNH THoi
1 Cách tính diện tích
của một tứ giác có 2 đư
ờng chéo vông góc:
2 Công thức tính diện
tích hình thoi:
3 Ví dụ:
3 Ví dụ:
Trong một khu vườn hình thang cân ABCD (đáy nhỏ AB = 30m, đáy lớn
CD = 50m, diện tích bằng 800m2),
C D
người ta làm một bồn hoa hình tứ giác MENG với M, E, N, G là trung
điểm các cạnh hình thang cân
M
E
N
G
a, Tứ giác MENG là hình gì?
b, Tính diện tích của bồn hoa?Giải:
b, Tính diện tích của bồn hoa:
MN là đường trung bình của hình thang nên:
MN = AB + CD
2
30 + 50 2
Ta có: MN.EG = 800 ⇒ EG = 800 : 40 = 20 m Diện tích bồn hoa hình thoi là:
S = 1
2 MN.EG
1
2 40.20