1. Trang chủ
  2. » Giáo án - Bài giảng

Sampling Distributions

19 124 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 651,5 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Generally, we are interested in population parameters.. When the census is impossible, we draw a sample from the population, then construct sample statistics, that have close relationshi

Trang 1

Sampling Distributions

Chapter 8

1

Trang 2

Generally, we are interested in population

parameters

When the census is impossible, we draw a sample

from the population, then construct sample statistics, that have close relationship to the population

parameters.

2

Trang 3

Samples are random, so the sample statistic is a

random variable.

3

Trang 4

8.1 Sampling Distribution of the Mean

Example 1: A die is thrown infinitely many times Let

X represent the number of spots showing on any

throw The probability distribution of X is

4

x 1 2 3 4 5 6

p(x) 1/6 1/6 1/6 1/6 1/6 1/6

E(X) = 1(1/6) +2(1/6) + 3(1/6)+……….= 3.5

V(X) = (1-3.5) 2 (1/6) + (2-3.5) 2 (1/6) +….…… …= 2.92

Trang 5

Suppose we want to estimate  from the mean

of a sample of size n = 2.

What is the distribution of ?

5

x

Trang 6

Throwing a die twice – sample mean

6

1 1,1 1 13 3,1 2 25 5,1 3

2 1,2 1.5 14 3,2 2.5 26 5,2 3.5

3 1,3 2 15 3,3 3 27 5,3 4

4 1,4 2.5 16 3,4 3.5 28 5,4 4.5

5 1,5 3 17 3,5 4 29 5,5 5

6 1,6 3.5 18 3,6 4.5 30 5,6 5.5

7 2,1 1.5 19 4,1 2.5 31 6,1 3.5

8 2,2 2 20 4,2 3 32 6,2 4

9 2,3 2.5 21 4,3 3.5 33 6,3 4.5

10 2,4 3 22 4,4 4 34 6,4 5

11 2,5 3.5 23 4,5 4.5 35 6,5 5.5

12 2,6 4 24 4,6 5 36 6,6 6

Sample Mean Sample Mean Sample Mean

1 1,1 1 13 3,1 2 25 5,1 3

2 1,2 1.5 14 3,2 2.5 26 5,2 3.5

3 1,3 2 15 3,3 3 27 5,3 4

4 1,4 2.5 16 3,4 3.5 28 5,4 4.5

5 1,5 3 17 3,5 4 29 5,5 5

6 1,6 3.5 18 3,6 4.5 30 5,6 5.5

7 2,1 1.5 19 4,1 2.5 31 6,1 3.5

8 2,2 2 20 4,2 3 32 6,2 4

9 2,3 2.5 21 4,3 3.5 33 6,3 4.5

10 2,4 3 22 4,4 4 34 6,4 5

11 2,5 3.5 23 4,5 4.5 35 6,5 5.5

12 2,6 4 24 4,6 5 36 6,6 6

These are all the possible pairs of values for the 2 throws And these are the means of each pair

Trang 7

The distribution of when n = 2

x

7

Notice there are 36 possible pairs of values:

1,1 1,2 … 1,6 2,1 2,2 … 2,6

………

6,1 6,2 … 6,6

1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

1 2 3 4 5 6 5 4 3 2 1

1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

x

Calculating the relative frequency of each value

of we have the following results

Frequency

Relative freq

(2+1)/2 = 1.5

(1+3)/2 = 2 (2+2)/2 = 2 (3+1)/2 = 2

Trang 8

) 25

( 1167

5 3

25 n

2 x

2 x

x

) 10

( 2917

5 3

10 n

2 x

2 x

x

) 5

( 5833

5 3

5 n

2 x

2

x

x

As the sample size changes, the mean of the sample mean does not change!

Trang 9

) 25

( 1167

5 3

25 n

2 x

2 x

x

) 10

( 2917

5 3

10 n

2 x

2 x

x

) 5

( 5833

5 3

5 n

2 x

2

x

x

As the sample size increases, the

variance of the sample mean decreases!

Trang 10

Demonstration: Why is the variance of the

sample mean is smaller than the population

variance?

Mean = 1.5 Mean = 2. Mean = 2.5

Compare the range of the population

to the range of the sample mean.Let us take samplesof two observations

2

Trang 11

The Central Limit Theorem

If a random sample is drawn from any population, the sampling distribution of the sample mean is:

– Normal if the parent population is normal,

– Approximately normal if the parent population is

not normal, provided the sample size is

sufficiently large The larger the sample size, the more closely the sampling distribution of will resemble a normal distribution

11

x

Trang 12

x

μ 

n

σ σ

2 x

2

x 

The mean of X is equal to the mean of the parent

population

The variance of X is equal to the parent population variance divided by ‘n’.

Trang 13

n Sampling Distribution

1 Population distribution

2

5

Trang 14

30

50

90

120

Census

Trang 15

0

n Sampling Distribution

1 Normal

Pop distribution

2

5

Trang 16

Example 2: The amount of soda pop in each bottle is normally distributed with a mean of 32.2 ounces and

a standard deviation of 3 ounces

Find the probability that a bottle bought by a

customer will contain more than 32 ounces.

16

0.7486

 = 32.2

x = 32

32) P(x 

0.7486 67)

P(z

) 3

32.2

32 σ

μ

x P(

32)

P(x

x

Trang 17

Find the probability that a carton of four bottles will have a mean of more than 32 ounces of soda per

bottle.

9082

0 )

33

1 z

( P

) 4

3

2 32 32

x ( P )

32 x

(

P

x

17

32

x  x  32 2

32) x

P( 

Trang 18

Example 3: The average weekly income of B.B.A

graduates one year after graduation is $600 Suppose the distribution of weekly income has a standard

deviation of $100

What is the probability that 35 randomly selected

graduates have an average weekly income of less

than $550?

18

0.0015 2.97)

P(z

) 35 100

600

550 σ

μ

x P(

550) x

P(

x

Trang 19

19

Ngày đăng: 03/04/2019, 11:12

TỪ KHÓA LIÊN QUAN