Generally, we are interested in population parameters.. When the census is impossible, we draw a sample from the population, then construct sample statistics, that have close relationshi
Trang 1Sampling Distributions
Chapter 8
1
Trang 2Generally, we are interested in population
parameters
When the census is impossible, we draw a sample
from the population, then construct sample statistics, that have close relationship to the population
parameters.
2
Trang 3Samples are random, so the sample statistic is a
random variable.
3
Trang 48.1 Sampling Distribution of the Mean
Example 1: A die is thrown infinitely many times Let
X represent the number of spots showing on any
throw The probability distribution of X is
4
x 1 2 3 4 5 6
p(x) 1/6 1/6 1/6 1/6 1/6 1/6
E(X) = 1(1/6) +2(1/6) + 3(1/6)+……….= 3.5
V(X) = (1-3.5) 2 (1/6) + (2-3.5) 2 (1/6) +….…… …= 2.92
Trang 5Suppose we want to estimate from the mean
of a sample of size n = 2.
What is the distribution of ?
5
x
Trang 6Throwing a die twice – sample mean
6
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 2.5 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,6 5.5
7 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 4,3 3.5 33 6,3 4.5
10 2,4 3 22 4,4 4 34 6,4 5
11 2,5 3.5 23 4,5 4.5 35 6,5 5.5
12 2,6 4 24 4,6 5 36 6,6 6
Sample Mean Sample Mean Sample Mean
1 1,1 1 13 3,1 2 25 5,1 3
2 1,2 1.5 14 3,2 2.5 26 5,2 3.5
3 1,3 2 15 3,3 3 27 5,3 4
4 1,4 2.5 16 3,4 3.5 28 5,4 4.5
5 1,5 3 17 3,5 4 29 5,5 5
6 1,6 3.5 18 3,6 4.5 30 5,6 5.5
7 2,1 1.5 19 4,1 2.5 31 6,1 3.5
8 2,2 2 20 4,2 3 32 6,2 4
9 2,3 2.5 21 4,3 3.5 33 6,3 4.5
10 2,4 3 22 4,4 4 34 6,4 5
11 2,5 3.5 23 4,5 4.5 35 6,5 5.5
12 2,6 4 24 4,6 5 36 6,6 6
These are all the possible pairs of values for the 2 throws And these are the means of each pair
Trang 7The distribution of when n = 2
x
7
Notice there are 36 possible pairs of values:
1,1 1,2 … 1,6 2,1 2,2 … 2,6
………
6,1 6,2 … 6,6
1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
1 2 3 4 5 6 5 4 3 2 1
1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36
x
Calculating the relative frequency of each value
of we have the following results
Frequency
Relative freq
(2+1)/2 = 1.5
(1+3)/2 = 2 (2+2)/2 = 2 (3+1)/2 = 2
Trang 8) 25
( 1167
5 3
25 n
2 x
2 x
x
) 10
( 2917
5 3
10 n
2 x
2 x
x
) 5
( 5833
5 3
5 n
2 x
2
x
x
As the sample size changes, the mean of the sample mean does not change!
Trang 9) 25
( 1167
5 3
25 n
2 x
2 x
x
) 10
( 2917
5 3
10 n
2 x
2 x
x
) 5
( 5833
5 3
5 n
2 x
2
x
x
As the sample size increases, the
variance of the sample mean decreases!
Trang 10Demonstration: Why is the variance of the
sample mean is smaller than the population
variance?
Mean = 1.5 Mean = 2. Mean = 2.5
Compare the range of the population
to the range of the sample mean.Let us take samplesof two observations
2
Trang 11The Central Limit Theorem
If a random sample is drawn from any population, the sampling distribution of the sample mean is:
– Normal if the parent population is normal,
– Approximately normal if the parent population is
not normal, provided the sample size is
sufficiently large The larger the sample size, the more closely the sampling distribution of will resemble a normal distribution
11
x
Trang 12x
μ
n
σ σ
2 x
2
x
The mean of X is equal to the mean of the parent
population
The variance of X is equal to the parent population variance divided by ‘n’.
Trang 13n Sampling Distribution
1 Population distribution
2
5
Trang 1430
50
90
120
Census
Trang 150
n Sampling Distribution
1 Normal
Pop distribution
2
5
Trang 16Example 2: The amount of soda pop in each bottle is normally distributed with a mean of 32.2 ounces and
a standard deviation of 3 ounces
Find the probability that a bottle bought by a
customer will contain more than 32 ounces.
16
0.7486
= 32.2
x = 32
32) P(x
0.7486 67)
P(z
) 3
32.2
32 σ
μ
x P(
32)
P(x
x
Trang 17Find the probability that a carton of four bottles will have a mean of more than 32 ounces of soda per
bottle.
9082
0 )
33
1 z
( P
) 4
3
2 32 32
x ( P )
32 x
(
P
x
17
32
x x 32 2
32) x
P(
Trang 18Example 3: The average weekly income of B.B.A
graduates one year after graduation is $600 Suppose the distribution of weekly income has a standard
deviation of $100
What is the probability that 35 randomly selected
graduates have an average weekly income of less
than $550?
18
0.0015 2.97)
P(z
) 35 100
600
550 σ
μ
x P(
550) x
P(
x
Trang 1919