Choose the one alternative that best completes the statement or answers the question... A fa exists, the limit of fx as x→a from the left exists, and the limit of fx as x→a from theright
Trang 1MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Find the average velocity of the function over the given interval.
6)
7) h(t) = sin (3t), 0, π
6A) 6
8)
Trang 2Use the table to find the instantaneous velocity of y at the specified value of x.
9) x = 1
0 0.20.40.60.81.01.21.4
00.020.080.180.320.50.720.98
00.010.040.090.160.250.360.49
00.120.481.081.9234.325.88
11)
Trang 312) x = 2.
x y00.51.01.52.02.53.03.54.0
103858707470583810
-0.05263-0.00503-0.00050.00000.00050.004980.04762
t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 16.810 17.880 17.988 18.012 18.120 19.210 ; instantaneous velocity is 18.0B)
t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 16.692 17.592 17.689 17.710 17.808 18.789 ; instantaneous velocity is 17.70C)
t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 5.043 5.364 5.396 5.404 5.436 5.763 ; instantaneous velocity is ∞D)
t 1.9 1.99 1.999 2.001 2.01 2.1s(t) 5.043 5.364 5.396 5.404 5.436 5.763 ; instantaneous velocity is 5.40
14)
Trang 4t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -4.9900 -4.9999 -5.0000 -5.0000 -4.9999 -4.9900 ; instantaneous velocity is-5.0
C)
t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; instantaneous velocity is ∞D)
t -0.1 -0.01 -0.001 0.001 0.01 0.1s(t) -2.9910 -2.9999 -3.0000 -3.0000 -2.9999 -2.9910 ; instantaneous velocity is-3.0
II limx→0f(x) = LrIII lim f(x) does not exist
21)
Trang 522) Given lim
x→0-f(x) = Ll, lim
x→0+f(x) = Lr , and Ll = Lr, which of the following statements is false?
I limx→0f(x) = Ll
II limx→0f(x) = LrIII lim
x→0f(x) does not exist.
II limx→0+f(x) does not exist.
III limx→0-f(x) = L
IV limx→0+f(x) = LA) I and II only B) III and IV only C) II and III only D) I and IV only
23)
24) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x
approaches some value of a?
A) f(a) exists, the limit of f(x) as x→a from the left exists, and the limit of f(x) as x→a from theright exists
B) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and
at least one of these limits is the same as f(a)
C) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, andthese two limits are the same
D) Either the limit of f(x) as x→a from the left exists or the limit of f(x) as x→a from the rightexists
24)
Trang 6Use the graph to evaluate the limit.
25) lim
x→-1f(x)
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y
1
-1
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
26)
Trang 727) lim
x→0f(x)
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
-2 -4
x
y 12 10 8 6 4 2
-2 -4
28)
Trang 8-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
30)
Trang 9-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
32)
Trang 10-1 -2 -3 -4
x
y 4 3 2 1
-1 -2 -3 -4
Trang 11Use the table of values of f to estimate the limit.
35) Let f(x) = x2 + 8x - 2, find lim
x→2f(x).
f(x)A)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70B)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = ∞C)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0D)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = 1.20B)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = ∞C)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485 ; limit = 4.0D)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 5.07736 5.09775 5.09978 5.10022 5.10225 5.12236 ; limit = 5.10
36)
Trang 1237) Let f(x) = x2 - 5, find lim
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -4.9900 -4.9999 -5.0000 -5.0000 -4.9999 -4.9900 ; limit = -5.0C)
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; limit = ∞D)
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; limit = -15.0
f(x) 0.5263 0.5025 0.5003 0.4998 0.4975 0.4762 ; limit = 0.5B)
f(x) -0.5263 -0.5025 -0.5003 -0.4998 -0.4975 -0.4762 ; limit = -0.5C)
f(x) 0.4263 0.4025 0.4003 0.3998 0.3975 0.3762 ; limit = 0.4D)
f(x) 0.6263 0.6025 0.6003 0.5998 0.5975 0.5762 ; limit = 0.6
38)
Trang 1339) Let f(x) = x2 - 3x + 2
x2 + 3x - 10, find limx→2f(x).
f(x)A)
f(x) 0.0304 0.0416 0.0427 0.0430 0.0441 0.0549 ; limit = 0.0429B)
f(x) -1.0690 -1.0067 -1.0007 -0.9993 -0.9934 -0.9355 ; limit = -1C)
f(x) 0.2304 0.2416 0.2427 0.2430 0.2441 0.2549 ; limit = 0.2429D)
2 - 2 cos(x) < 1 hold for all values of x close
to zero What, if anything, does this tell you about x sin(x)
2 - 2 cos(x) ? Explain.
42)
Trang 14MULTIPLE CHOICE Choose the one alternative that best completes the statement or answers the question.
43) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" andinclude a statement of any restrictions on the principle
A) If limx→a g(x) = M and limx→a f(x) = L, then limx→a
g(x)f(x) =
limx→a g(x)limx→a f(x)
= M
L, provided that
L ≠ 0
B) limx→a
g(x)f(x) = g(a)f(a), provided that f(a) ≠ 0
C) limx→a
g(x)f(x) = g(a)f(a).
D) If limx→a g(x) = M and limx→a f(x) = L, then limx→a
g(x)f(x) =
limx→a g(x)limx→a f(x)
= M
L, provided thatf(a) ≠ 0
B) The limit of a sum or a difference is the sum or the difference of the functions
C) The sum or the difference of two functions is continuous
D) The limit of a sum or a difference is the sum or the difference of the limits
44)
45) The statement "the limit of a constant times a function is the constant times the limit" follows from
a combination of two fundamental limit principles What are they?
A) The limit of a product is the product of the limits, and a constant is continuous
B) The limit of a product is the product of the limits, and the limit of a quotient is the quotient ofthe limits
C) The limit of a function is a constant times a limit, and the limit of a constant is the constant
D) The limit of a constant is the constant, and the limit of a product is the product of the limits
Trang 15Give an appropriate answer.
58)
Trang 1665) lim
x→0
1 + x - 1x
Trang 1778)
Trang 1879) lim
h → 0
(x + h)3 - x3h
Provide an appropriate response.
81) It can be shown that the inequalities -x ≤ x cos 1
x ≤ x hold for all values of x ≥ 0
Find limx→0x cos
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 16.810 17.880 17.988 18.012 18.120 19.210 ; limit = 18.0B)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 16.692 17.592 17.689 17.710 17.808 18.789 ; limit = 17.70C)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = 5.40D)
x 1.9 1.99 1.999 2.001 2.01 2.1f(x) 5.043 5.364 5.396 5.404 5.436 5.763 ; limit = ∞
84)
Trang 1985) If f(x) = x4 - 1
x - 1 , find limx → 1 f(x)
f(x)A)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 3.439 3.940 3.994 4.006 4.060 4.641 ; limit = 4.0B)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 1.032 1.182 1.198 1.201 1.218 1.392 ; limit = ∞C)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 4.595 5.046 5.095 5.105 5.154 5.677 ; limit = 5.10D)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 1.032 1.182 1.198 1.201 1.218 1.392 ; limit = 1.210
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -1.22843 -1.20298 -1.20030 -1.19970 -1.19699 -1.16858 ; limit = -1.20C)
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -4.09476 -4.00995 -4.00100 -3.99900 -3.98995 -3.89526 ; limit = -4.0D)
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -2.18529 -2.10895 -2.10090 -2.99910 -2.09096 -2.00574 ; limit = -2.10
86)
Trang 2087) If f(x) = x - 4
x - 2, find limx → 4 f(x).
f(x)A)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = 1.20B)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485 ; limit = 4.0C)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745 ; limit = ∞D)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 5.07736 5.09775 5.09978 5.10022 5.10225 5.12236 ; limit = 5.10
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; limit = -15.0C)
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -1.4970 -1.4999 -1.5000 -1.5000 -1.4999 -1.4970 ; limit = ∞D)
x -0.1 -0.01 -0.001 0.001 0.01 0.1f(x) -4.9900 -4.9999 -5.0000 -5.0000 -4.9999 -4.9900 ; limit = -5.0
88)
Trang 2189) If f(x) = x + 1
x + 1 , find limx → 1 f(x).
f(x)A)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 2.15293 2.13799 2.13656 2.13624 2.13481 2.12106 ; limit = 2.13640B)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 0.72548 0.70888 0.70728 0.70693 0.70535 0.69007 ; limit = 0.7071C)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 0.21764 0.21266 0.21219 0.21208 0.21160 0.20702 ; limit = ∞D)
x 0.9 0.99 0.999 1.001 1.01 1.1f(x) 0.21764 0.21266 0.21219 0.21208 0.21160 0.20702 ; limit = 0.21213
f(x) -0.02516 -0.00250 -0.00025 0.00025 0.00250 0.02485 ; limit = 0B)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 3.9000 2.9000 1.9000 2.0000 3.0000 4.0000 ; limit = 1.95C)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 3.9000 2.9000 1.9000 2.0000 3.0000 4.0000 ; limit = ∞D)
x 3.9 3.99 3.999 4.001 4.01 4.1f(x) 1.47736 1.49775 1.49977 1.50022 1.50225 1.52236 ; limit = 1.50
90)
Trang 22For the function f whose graph is given, determine the limit.
91) Find lim
x→5-f(x) and limx→5+f(x).
x -2 -1 1 2 3 4 5 6 7 8 9 10 11
y 8 6 4 2
-2 -4 -6 -8
x -2 -1 1 2 3 4 5 6 7 8 9 10 11
y 8 6 4 2
-2 -4 -6 -8
y 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
92)
Trang 2393) Find lim
x→3f(x).
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
x -5 -4 -3 -2 -1 1 2 3 4 5
y 5 4 3 2 1
-1 -2 -3 -4 -5
93)
94) Find lim
x→-3f(x).
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
x -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
y 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6
Trang 24Find the limit.
Trang 25Find all vertical asymptotes of the given function.
113)
114) f(x) = -2x(x + 2)
2x2 - 5x - 7A) x = - 2
Trang 26x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
117)
Trang 27118) f(x) = x
x2 + x + 2A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
118)
Trang 28119) f(x) = x2 - 3
x3A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
y 4
2
-2
-4
x -10 -8 -6 -4 -2 2 4 6 8 10
y 4
2
-2
-4
119)
Trang 29120) f(x) = 1
x + 1A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
120)
Trang 30121) f(x) = x - 1
x + 1A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
121)
Trang 31122) f(x) = 1
(x + 2)2A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
122)
Trang 32123) f(x) = 2x2
4 - x2A)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
B)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10C)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
D)
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
x -10 -8 -6 -4 -2 2 4 6 8 10
y 10 8 6 4 2
-2 -4 -6 -8 -10
Trang 33135)
Trang 34Divide numerator and denominator by the highest power of x in the denominator to find the limit.
Trang 35148) h(x) = 9x4 - 5x2 - 6
5x5 - 8x + 4A) y = 5
Trang 36x y
156)
Trang 37157) f(0) = 5, f(1) = -5, f(-1) = -5, lim
x→±∞ f(x) = 0.
x y
Trang 40d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)
t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)
175)
Trang 41176) Is f continuous at f(0)?
f(x) =
-x2 + 1,2x,-5,-2x + 4 1,
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)
t -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
d 6 5 4 3 2 1 -1 -2 -3 -4 -5 -6 (1, -5)
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
d 10 8 6 4 2
-2 -4 -6 -8 -10
(2, 0)
t -5 -4 -3 -2 -1 1 2 3 4 5
d 10 8 6 4 2
-2 -4 -6 -8 -10 (2, 0)
178)
Trang 42179) Is the function given by f(x) = x + 1
x2 - 8x + 12 continuous at x = 2? Why or why not?
A) Yes, lim
x→ 2f(x) = f(2)B) No, f(2) does not exist and lim
x→ 2 f(x) does not exist
179)
180) Is the function given by f(x) = 10x + 9 continuous at x = - 109 ? Why or why not?
A) No, lim
x→ - 910
f(x) does not exist B) Yes, lim
x→- 910
f(x) = f - 9
10
180)
181) Is the function given by f(x) = x2 - 4, for x < 0
-2, for x ≥ 0 continuous at x = -2? Why or why not?
continuous at x = 3? Why or why not?
183)
184) y = 3
(x + 4)2 + 8A) discontinuous only when x = 24 B) continuous everywhereC) discontinuous only when x = -4 D) discontinuous only when x = -32
184)
185) y = x + 3
x2 - 7x + 12A) discontinuous only when x = 3 B) discontinuous only when x = 3 or x = 4C) discontinuous only when x = -3 or x = 4 D) discontinuous only when x = -4 or x = 3
185)
186) y = 2
x2 - 16A) discontinuous only when x = -4B) discontinuous only when x = 16C) discontinuous only when x = -4 or x = 4
186)
Trang 43187) y = 2
x + 1 -
x22A) discontinuous only when x = -1 B) continuous everywhereC) discontinuous only when x = -3 D) discontinuous only when x = -2 or x = -1
187)
188) y = sin (3θ)
2θ
C) discontinuous only when θ = π
188)
189) y = 2 cos θ
θ + 9A) discontinuous only when θ = π
193)
194) lim
x→∞
11x - 1x3
194)