1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solutions manual for an introduction to numerical analysis 1st edition by mayers and endre pages deleted

21 182 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 224,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Thenumberof correct guresin theapproximationxnjg: From1.24forNewton'smethod wehave j x n+1j j x nj2 !jf00 j 2jf0 j: where B=log 10jf00 j 2jf0 j: IfB issmall thenD n+1 iscloseto2D n,but i

Trang 2

The xed pointsarethesolutionsof

2(x2

n+c)

 =1

2(

2

1+c);

sob subtraction

x

n+1

 =1

2(x2

n

 )=1

2(x

n+ )(x

n

 ):

It follows that if jx

n+ j < 2, then jx

0+ >0

Hencex

1

iscloserto thenwas x

0,soalso0x

1

< Aninduction

argumentthenshowsthateach x

nsatis es0x

dependentofthesignofx

0,anditfollowsthatx

n

! forallx

0such

Trang 3

(x)<0andf (x)>0in( 1;0)andthesameargument

showsthatthemethodconvergestothenegativerootifx

For thisfunctionf,Newton'smethod gives

x

n+1

=x

nexp(x

n) x

n2

exp(x

n) 1

=x

n

1 (x

n+2)exp( x

n)

1 exp(x

n)

isverysmall indeed

Inthesamewa ,whenx

n2

andconvergencebecomesquadraticandrapid About100iterationsare

requiredto giveanaccuratevaluefortheroot

However,when x

0

= 100, x

1

is very close to 2, and is therefore

veryclosetothenegativeroot Three,orpossiblyfour,iterationsshould

givethevalueoftheroot tosixdecimalplaces

Trang 4

(x

n):

Toa oidcalculatingthederivativewemightconsiderapproximatingthe

derivativeb

f0

(x

n)

f(x

n+Æ) f(x

n)

()+1

2(x

n

2

f ()+O(x

n

3

=

0

+1

2

2

0

+1

2

2

f ) f(+)

=(f0

) +1

2

2

[3f0

f +(f0

2

f(x+n+f(x

n)) f(x

n)

=

2

[(f0

) +0

f ]

[(f0

) +1

2

0

(3+f0

)f00

]+O()

=2

f (1+f

0

)

f0+O() :

Thisshowsthatifx

0

 issuÆcientlysmall theiterationconverges

quadratically The analysis here requires that f

000

is continuous in a

neighbourhoo of,tojustifythetermsO(

3

) Amorecarefulanalysis

mightrelax thistorequireonlythecontinuityoff

The leading term in x

n+1

 is very similar to that in Newton's

method,but withanadditionalterm

Theconvergenceofthismethod,startingfromapointclosetoaroot,

isverysimilartoNewton'smethod Butifx

veryp or,andthebehaviourmaybeverydi erent Fortheexample

Trang 5

quitecloseto 2,andthenrapidconvergencetothenegativeroot.

However, starting from x

0))

is about 10

9500

; thedi erence betweenx

0and x

1

is excessively small

Althoughtheiterationconverges,therateofconvergenceissoslowthat

foranypracticalpurpose itis virtually stationary Evenstarting from

x

0

=3manythousandsofiterationsarerequiredforconvergence

Trang 6

Thenumberof correct guresin theapproximationx

njg:

From(1.24)forNewton'smethod wehave

j x

n+1j

j x

nj2

!jf00

()j

2jf0

()j:

where

B=log

10jf00

()j

2jf0

()j:

IfB issmall thenD

n+1

iscloseto2D

n,but ifB issigni cantlylarger

2(e0:0001

wherethelastcolumnshowsthenumberofcorrectdecimalplaces

Therootis =0:000099998333361to 15decimalplaces

Trang 7

n) f (

n)

2f0

(x

n):

Nowf

0

()=0,so b theMeanValueTheorem

f0

(x

n) f0

()=(x

n

)f00

(

n)

forsomevalueof

nbetween andx

n Hence

 x

n+1

=( x

n)f00

(

n)

2f00

(

n):

j x

n+1

j<Kj x

nj;

where

K=M

n

!

Then !,f (

n)!f ()andf (

n)!f () This showsthat

1

2

ateachstep

Trang 8

0

()=f ()=0wegetfromthede nitionofNewton's

method,providedthatf

f(x

n)

f0

(x

n)

= x

n+1

6(x

n

3

f000

(

n)

1

2(x

n

2

f000

(

n)

=( x

n)



1f000

(

n)

3f000

(

n)

hood,andNewton's methodconvergesto Also,

j x

n+1j

j x

nj

!2

3

;

sothatconvergenceislinear,withasymptoticrateofconvergenceln(3=2)

Trang 9

TheprooffollowscloselytheproofofTheorem1.9

From (1.23) it follows that x

n+1

< , provided that x

nlies in the

interval I = [X;] Since f is monotonic increasing and f() = 0,

f(x) < 0 in I Hence if x

0

2 I the sequence (x

n) lies in I, and is

monotonicincreasing Asit isbounded abo eb , it converges;since

 is theonly rootof f(x)=0in I, the sequenceconvergesto  Since

f iscontinuousitfollowsthat

 x

n+1

( x

n)

=

f (

n)

2f0

(x

n)

!

f ()

2f0

()

;

sothatconvergenceisquadratic

Trang 10

Neglectingtermsofsecondorderin "weget

is not exact, it is clear that for suÆciently

small"thesequenceconvergesto 1

With x

0

and x

1interchanged, thevalueof x

Trang 11

n 1x

n 1

f(x

n) (f(x

n 1

f(x

n))

Inthelimit asx

n

! bothnumeratorand denominator tendto zero,

soweapplyl'Hopital'sruletogive

n 1f0

(x

n)+f0

(x

n))

f0

(x

n)(x

n 1f0

n 1f0

(x

n 1f0

()

f0

(x

n 1)(x

n 1

 +(f(x

n 1

f()):

Wemustnowusel'Hopital'sruleagain,togive nally

n 1

 +f0

(x

n 1+f0

():

Nowthelimitof'doesnotdependonthewa inwhichx

nandx

():

Nowassumethat

! A1=q

;

Trang 12

Thisgivesaquadraticequationforq, andsinceweclearlyrequirethat

ispositiveweobtainq=

1

2(1+p

5),givingtherequiredresult

Trang 13

Fig 1.6 showsatypicalsituation withf (x)>0, sothe graphoff

liesbelowtheline PQ Here P and Qare thepointscorrespondingto

u

n

and v AlsoR is thepointcorrespondingto , so that f() <0

Hencein thenextiterationu

and soon Thus if f > 0in [u

N

;v

N], and f(u

N) <0< f(v

N) then

N)< 0wesee in thesame

wa thatu

n

=u

NforallnN

Similar results are easily deduced if f < 0 in [u

N

;v

N]; it is only

necessarytoreplacef b thefunction f

NowreturningtothesituationinFig 1.6,thepointv remains xed,

and the points u

nare monotonically increasing Hence the sequence

N

f(+Æ) (f(v

N) f(+Æ))

Æ(f(v

N) f(+Æ))

:

InthelimitasÆ!0thenumeratoranddenominatorbothtendtozero,

soweapplyl'Hopital'sruletogive

Nf0

Nf0

Hencethesequence(u

n)convergeslinearlyto,andtheasymptoticrate

ofconvergenceis

ln



1(v

N

)f0

()

f(v

N)

()

f0

(

N)

Trang 14

0

(),andthemorerapidlytheiterationconverges

Asymptoticallythismethodconvergesmoreslowlythanthestandard

secantmethod Its advantageis that iff(u

0andf(v

0haveopposite

signstheiterationis guaranteedto convergeto aroot lying in [u

0

;v

0];

themethodis thereforerobust However,it iseasyto drawasituation

where v

0

isfar from , andwhere thebisection method is likelyto be

moreeÆcient

Trang 15

The sequence (x

n) converges to the two-cycle a;b if x

2n

! a and

x

2n+1

!b, orequivalently witha and b interchanged Soa and b are

xed points of the composite iteration x

n+1

= h(x

n), where h(x) =

g(g(x)), and we de ne astable two-cycleto beonewhich corresponds

toastable xedpointofh Now

h0

(x)=g0

(g(x))g0

(x

n);

andthecorrespondingfunctiong isde nedb

(x)=

f(x)f00

(x)

[f0

(x)]

2:

Hence,if

f(a)f00

(a)

[f0

(a)]

2

f(b)f00

(b)

[f0

(b)]

2

<1

thetwo-cycleisstable

Newton's method for the solution of x

a

3a2

1

a= a

a3

+a

3a2

1:

Theseequationshavethesolution

a=1

p

5:

(a)

[f0

(a)]

2

f(b)f00

(b)

[f0

(b)]

2

=36;

Trang 16

Multiplicationb Qontherightreversestheorder ofthecolumnsof

A Hence,writingB=QAQ,

Nowsuppose that Ais ageneralnn matrix,that B =QAQ, and

that B can be written as B =L

1U

1, where L is unit lowertriangular

andU isuppertriangular Then

A=QBQ

=QL

1U

1Q

=(QL

1Q)(QU

1Q)

,andthiscan bedoneifalltheleadingprincipal submatrices

of B are nonsingular The requiredcondition is therefore that all the

\trailing"principalsubmatricesofAarenonsingular

Thefactorisationdoesnotexist,forexample,if

Trang 17

is uppertriangular Nowlet

D be the diagonal matrix whose diagonal elements are the diagonal

1

U



;thenA=LDU

asrequired,sinceU isunit uppertriangular

Thegiven conditiononA ensuresthat u



ii6=0fori =1;: : n The

procedureneeds tobemodi ed slightlywhen u

Ifthe factorisation A =LU is known, wecan usethis procedure to

ndD andU suchthat A=LDU ThenA

T

=UT

DLT

,whichcanbe

written

AT

=(UT

)(DLT

isuppertriangular Thisis

thereforetherequiredfactorisationofA

T

Trang 18

Suppose that therequired resultis truefor n=k, sothat any

non-singularkkmatrixAcanbewrittenasPA=LU Thisisobviously

truefork=1

Nowconsideranynonsingular(n+1)(n+1)matrixApartitioned

accordingto the rst row and column We locate the element in the

rstcolumnwithlargestmagnitude,oranyoneofthemifthereismore

thanone,and interchange rowsifrequired Ifthe largestelementis in

rowr weinterchangerows1andr Wethenwrite

P(1r)

A=



wT

p C



1mT

=wT

pmT

+C=B:

Thisgives

m=1

w;

and

C=B

1

pmT

:

Notethatif =0thisimpliesthatalltheelementsofthe rstcolumn

ofAwere zero,contradictingourassumptionthatAisnonsingular

Now det (A)= det(C), andso thematrix C is also nonsingular,

andasitisannnmatrixwecanusetheinductivehypothesistowrite

A=



10T

0P





0T

P





P(1r)

Trang 19

PA=



0T

0 U





;

whichis therequiredfactorisationofA

Thetheorem thereforeholdsforeverymatrixofordern+1,andthe

wherethe rsttwoequationsareclearlyincompatible Theonlypossible

permutation matrix P interchanges the rows, and the factorisation is

obviouslystillimpossible

Trang 20

Partitioningthematricesb the rstkrowsandcolumns,theequation

Ly=bbecomes



L

1O

wherewehaveusedthefact that the rst krowsof barezero

Multi-plyingoutthis equationgives

L

1y

1

=0

Cy

1+L

2y

2are nonsingular

Hencethe rstkrowsofyarezero

Columnj oftheinverseofL isy

(j)

,thesolutionof

Ly(j)

=e(j)

;

where e

(j)

is column j of the unit matrix and has its only nonzero

element in row j Hence the rst j 1 elements of e

(j)

are zero, and

b what we have just proved the rst j 1 elements of y

(j)

are zero

Thusineachcolumn oftheinverse allthe elementsabo ethediagonal

elementarezero,andtheinverseislowertriangular

Trang 21

TheoperationsonthematrixB are:

(i) Multiplyingalltheelementsin arowb ascalar;

(ii) Addingamultipleofonerowto another

Eachoftheseisequivalenttomultiplyingontheleftb anonsingular

matrix Evidentlythee ectofsuccessiveoperations(i)isthatthe

diag-onalelementsin the rstncolumns areeach equalto1,and thee ect

ofsuccessiveoperations(ii)isthatalltheo diagonalelementsareequal

tozero Hence the nal resultinthe rstncolumnsistheunitmatrix

Hencethecombinede ectofalltheseoperationsisequivalentto

mul-tiplyingBontheleftb A

atanystage isthe

determi-nantof theleadingprincipal rrsubmatrix of A, multiplied b each

oftheprecedingscalingfactors1=b

j Hence ifalltheleadingprincipal

submatricesofAarenonsingular,noneofthediagonalelementsb

jused

atanystagearezero

Ateachstage,thescalingoftheelementsinrowjrequires2n

multipli-cations Thecalculationofeachtermb

ikb

ijb

jkinvolvesone multipli-

cation,andthereare2n(n 1) suchelements,asrowj isnotinvolved

Thus each stage requires 2n

However, in stage j the rst j 1 columns and the last n j +1

columnsarecolumnsoftheunitmatrix Hencethescalingofrowjonly

involvesnnonzeroelements,andinthecalculatingofthenewelements

b

ik

, half of the factorsb

jkare zero This reduces the total number of

multiplicationsfrom2n

3

ton3

...

InthelimitasỈ!0thenumeratoranddenominatorbothtendtozero,

soweapplyl''Hopital''sruletogive

Nf0

Nf0

Hencethesequence(u

n)convergeslinearlyto,andtheasymptoticrate

ofconvergenceis...

Asymptoticallythismethodconvergesmoreslowlythanthestandard

secantmethod Its advantageis that iff(u

0andf(v

0haveopposite

signstheiterationis guaranteedto convergeto aroot lying in [u

0...

Thetheorem thereforeholdsforeverymatrixofordern+1,andthe

wherethe rsttwoequationsareclearlyincompatible Theonlypossible

permutation matrix P interchanges the rows, and the factorisation

Ngày đăng: 01/03/2019, 16:57

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm