Thenumberof correct guresin theapproximationxnjg: From1.24forNewton'smethod wehave j x n+1j j x nj2 !jf00 j 2jf0 j: where B=log 10jf00 j 2jf0 j: IfB issmall thenD n+1 iscloseto2D n,but i
Trang 2Solutions Manual for An Introduction to Numerical Analysis 1st
Edition by Mayers and Endre
link full download:
https://getbooksolutions.com/download/solutions-manual-for-an-introduction-to-numerical-analysis-1st-edition-by-mayers-and-endre/
Trang 3Thexed pointsarethesolutionsof
2(x2
n+c)
=1
2(
2
1+c);
sob subtraction
x
n+1
=1
2(x2
n
)=1
2(x
n+ )(x
n
):
It follows that if jx
n+ j < 2, then jx
0+ >0
Hencex
1
iscloserto thenwas x
0,soalso0x
1
< Aninduction
argumentthenshowsthateach x
nsatises0x
dependentofthesignofx
0,anditfollowsthatx
n
! forallx
0such
Trang 4(x)<0andf (x)>0in( 1;0)andthesameargument
showsthatthemethodconvergestothenegativerootifx
For thisfunctionf,Newton'smethod gives
x
n+1
=x
nexp(x
n) x
n2
exp(x
n) 1
=x
n
1 (x
n+2)exp( x
n)
1 exp(x
n)
isverysmall indeed
Inthesamewa ,whenx
n2
andconvergencebecomesquadraticandrapid About100iterationsare
requiredto giveanaccuratevaluefortheroot
However,when x
0
= 100, x
1
is very close to 2, and is therefore
veryclosetothenegativeroot Three,orpossiblyfour,iterationsshould
givethevalueoftheroot tosixdecimalplaces
Trang 5(x
n):
Toa oidcalculatingthederivativewemightconsiderapproximatingthe
derivativeb
f0
(x
n)
f(x
n+Æ) f(x
n)
()+1
2(x
n
2
f ()+O(x
n
3
=
0
+1
2
2
0
+1
2
2
f ) f(+)
=(f0
) +1
2
2
[3f0
f +(f0
2
f(x+n+f(x
n)) f(x
n)
=
2
[(f0
) +0
f ]
[(f0
) +1
2
0
(3+f0
)f00
]+O()
=2
f (1+f
0
)
f0+O() :
Thisshowsthatifx
0
issuÆcientlysmall theiterationconverges
quadratically The analysis here requires that f
000
is continuous in a
neighbourhoo of,tojustifythetermsO(
3
) Amorecarefulanalysis
mightrelax thistorequireonlythecontinuityoff
The leading term in x
n+1
is very similar to that in Newton's
method,but withanadditionalterm
Theconvergenceofthismethod,startingfromapointclosetoaroot,
isverysimilartoNewton'smethod Butifx
veryp or,andthebehaviourmaybeverydierent Fortheexample
Trang 6quitecloseto 2,andthenrapidconvergencetothenegativeroot.
However, starting from x
0))
is about 10
9500
; thedierence betweenx
0and x
1
is excessively small
Althoughtheiterationconverges,therateofconvergenceissoslowthat
foranypracticalpurpose itis virtually stationary Evenstarting from
Trang 7Thenumberof correctguresin theapproximationx
njg:
From(1.24)forNewton'smethod wehave
j x
n+1j
j x
nj2
!jf00
()j
2jf0
()j:
where
B=log
10jf00
()j
2jf0
()j:
IfB issmall thenD
n+1
iscloseto2D
n,but ifB issignicantlylarger
2(e0:0001
wherethelastcolumnshowsthenumberofcorrectdecimalplaces
Therootis =0:000099998333361to 15decimalplaces
Trang 8n) f (
n)
2f0
(x
n):
Nowf
0
()=0,so b theMeanValueTheorem
f0
(x
n) f0
()=(x
n
)f00
(
n)
forsomevalueof
nbetween andx
n Hence
x
n+1
=( x
n)f00
(
n)
2f00
(
n):
j x
n+1
j<Kj x
nj;
where
K=M
n
!
Then !,f (
n)!f ()andf (
n)!f () This showsthat
Trang 90
()=f ()=0wegetfromthedenitionofNewton's
method,providedthatf
f(x
n)
f0
(x
n)
= x
n+1
6(x
n
3
f000
(
n)
1
2(x
n
2
f000
(
n)
=( x
n)
1f000
(
n)
3f000
(
n)
hood,andNewton's methodconvergesto Also,
j x
n+1j
j x
nj
!2
3
;
sothatconvergenceislinear,withasymptoticrateofconvergenceln(3=2)
Trang 10TheprooffollowscloselytheproofofTheorem1.9
From (1.23) it follows that x
n+1
< , provided that x
nlies in the
interval I = [X;] Since f is monotonic increasing and f() = 0,
f(x) < 0 in I Hence if x
0
2 I the sequence (x
n) lies in I, and is
monotonicincreasing Asit isbounded abo eb , it converges;since
is theonly rootof f(x)=0in I, the sequenceconvergesto Since
f iscontinuousitfollowsthat
x
n+1
( x
n)
=
f (
n)
2f0
(x
n)
!
f ()
2f0
()
;
sothatconvergenceisquadratic
Trang 11Neglectingtermsofsecondorderin "weget
is not exact, it is clear that for suÆciently
small"thesequenceconvergesto 1
With x
0
and x
1interchanged, thevalueof x
Trang 12n 1x
n 1
f(x
n) (f(x
n 1
f(x
n))
Inthelimit asx
n
! bothnumeratorand denominator tendto zero,
soweapplyl'Hopital'sruletogive
n 1f0
(x
n)+f0
(x
n))
f0
(x
n)(x
n 1f0
n 1f0
(x
n 1f0
()
f0
(x
n 1)(x
n 1
+(f(x
n 1
f()):
Wemustnowusel'Hopital'sruleagain,togivenally
n 1
+f0
(x
n 1+f0
():
Nowthelimitof'doesnotdependonthewa inwhichx
nandx
():
Nowassumethat
! A1=q
;
Trang 13Thisgivesaquadraticequationforq, andsinceweclearlyrequirethat
ispositiveweobtainq=
1
2(1+p
5),givingtherequiredresult
Trang 14Fig 1.6 showsatypicalsituation withf (x)>0, sothe graphoff
liesbelowtheline PQ Here P and Qare thepointscorrespondingto
u
n
and v AlsoR is thepointcorrespondingto , so that f() <0
Hencein thenextiterationu
and soon Thus if f > 0in [u
N
;v
N], and f(u
N) <0< f(v
N) then
N)< 0wesee in thesame
wa thatu
n
=u
NforallnN
Similar results are easily deduced if f < 0 in [u
N
;v
N]; it is only
necessarytoreplacef b thefunction f
NowreturningtothesituationinFig 1.6,thepointv remainsxed,
and the points u
nare monotonically increasing Hence the sequence
N
f(+Æ) (f(v
N) f(+Æ))
Æ(f(v
N) f(+Æ))
:
InthelimitasÆ!0thenumeratoranddenominatorbothtendtozero,
soweapplyl'Hopital'sruletogive
Nf0
Nf0
Hencethesequence(u
n)convergeslinearlyto,andtheasymptoticrate
ofconvergenceis
ln
1(v
N
)f0
()
f(v
N)
()
f0
(
N)
Trang 15
0
(),andthemorerapidlytheiterationconverges
Asymptoticallythismethodconvergesmoreslowlythanthestandard
secantmethod Its advantageis that iff(u
0andf(v
0haveopposite
signstheiterationis guaranteedto convergeto aroot lying in [u
0
;v
0];
themethodis thereforerobust However,it iseasyto drawasituation
where v
0
isfar from , andwhere thebisection method is likelyto be
moreeÆcient
Trang 16The sequence (x
n) converges to the two-cycle a;b if x
2n
! a and
x
2n+1
!b, orequivalently witha and b interchanged Soa and b are
xed points of the composite iteration x
n+1
= h(x
n), where h(x) =
g(g(x)), and we dene astable two-cycleto beonewhich corresponds
toastable xedpointofh Now
h0
(x)=g0
(g(x))g0
(x
n);
andthecorrespondingfunctiong isdenedb
(x)=
f(x)f00
(x)
[f0
(x)]
2:
Hence,if
f(a)f00
(a)
[f0
(a)]
2
f(b)f00
(b)
[f0
(b)]
2
<1
thetwo-cycleisstable
Newton's method for the solution of x
a
3a2
1
a= a
a3
+a
3a2
1:
Theseequationshavethesolution
a=1
p
5:
(a)
[f0
(a)]
2
f(b)f00
(b)
[f0
(b)]
2
=36;
Trang 17Multiplicationb Qontherightreversestheorder ofthecolumnsof
A Hence,writingB=QAQ,
Nowsuppose that Ais ageneralnn matrix,that B =QAQ, and
that B can be written as B =L
1U
1, where L is unit lowertriangular
andU isuppertriangular Then
A=QBQ
=QL
1U
1Q
=(QL
1Q)(QU
1Q)
,andthiscan bedoneifalltheleadingprincipal submatrices
of B are nonsingular The requiredcondition is therefore that all the
\trailing"principalsubmatricesofAarenonsingular
Thefactorisationdoesnotexist,forexample,if
Trang 18is uppertriangular Nowlet
D be the diagonal matrix whose diagonal elements are the diagonal
1
U
;thenA=LDU
asrequired,sinceU isunit uppertriangular
Thegiven conditiononA ensuresthat u
ii6=0fori =1;: : n The
procedureneeds tobemodied slightlywhen u
Ifthe factorisation A =LU is known, wecan usethis procedure to
ndD andU suchthat A=LDU ThenA
T
=UT
DLT
,whichcanbe
written
AT
=(UT
)(DLT
isuppertriangular Thisis
thereforetherequiredfactorisationofA
T
Trang 19
Suppose that therequired resultis truefor n=k, sothat any
non-singularkkmatrixAcanbewrittenasPA=LU Thisisobviously
truefork=1
Nowconsideranynonsingular(n+1)(n+1)matrixApartitioned
accordingto the rst row and column We locate the element in the
rstcolumnwithlargestmagnitude,oranyoneofthemifthereismore
thanone,and interchange rowsifrequired Ifthe largestelementis in
rowr weinterchangerows1andr Wethenwrite
P(1r)
A=
wT
p C
1mT
=wT
pmT
+C=B:
Thisgives
m=1
w;
and
C=B
1
pmT
:
Notethatif=0thisimpliesthatalltheelementsoftherstcolumn
ofAwere zero,contradictingourassumptionthatAisnonsingular
Now det (A)=det(C), andso thematrix C is also nonsingular,
andasitisannnmatrixwecanusetheinductivehypothesistowrite
A=
10T
0P
0T
Trang 20PA=
0T
0 U
;
whichis therequiredfactorisationofA
Thetheorem thereforeholdsforeverymatrixofordern+1,andthe
wherethersttwoequationsareclearlyincompatible Theonlypossible
permutation matrix P interchanges the rows, and the factorisation is
obviouslystillimpossible
Trang 21Partitioningthematricesb therstkrowsandcolumns,theequation
Ly=bbecomes
L
1O
wherewehaveusedthefact that therst krowsof barezero
Multi-plyingoutthis equationgives
L
1y
1
=0
Cy
1+L
2y
2are nonsingular
Hencetherstkrowsofyarezero
Columnj oftheinverseofL isy
(j)
,thesolutionof
Ly(j)
=e(j)
;
where e
(j)
is column j of the unit matrix and has its only nonzero
element in row j Hence the rst j 1 elements of e
(j)
are zero, and
b what we have just proved the rst j 1 elements of y
(j)
are zero
Thusineachcolumn oftheinverse allthe elementsabo ethediagonal
elementarezero,andtheinverseislowertriangular
Trang 22TheoperationsonthematrixB are:
(i) Multiplyingalltheelementsin arowb ascalar;
(ii) Addingamultipleofonerowto another
Eachoftheseisequivalenttomultiplyingontheleftb anonsingular
matrix Evidentlytheeectofsuccessiveoperations(i)isthatthe
diag-onalelementsin therstncolumns areeach equalto1,and theeect
ofsuccessiveoperations(ii)isthatalltheodiagonalelementsareequal
tozero Hence thenal resultintherstncolumnsistheunitmatrix
Hencethecombinedeectofalltheseoperationsisequivalentto
mul-tiplyingBontheleftb A
atanystage isthe
determi-nantof theleadingprincipal rrsubmatrix of A, multiplied b each
oftheprecedingscalingfactors1=b
j Hence ifalltheleadingprincipal
submatricesofAarenonsingular,noneofthediagonalelementsb
jused
atanystagearezero
Ateachstage,thescalingoftheelementsinrowjrequires2n
multipli-cations Thecalculationofeachtermb
ikb
ijb
jkinvolvesone multipli-
cation,andthereare2n(n 1) suchelements,asrowj isnotinvolved
Thus each stage requires 2n
However, in stage j the rst j 1 columns and the last n j +1
columnsarecolumnsoftheunitmatrix Hencethescalingofrowjonly
involvesnnonzeroelements,andinthecalculatingofthenewelements
b
ik
, half of the factorsb
jkare zero This reduces the total number of
multiplicationsfrom2n
3
ton3
...
InthelimitasỈ!0thenumeratoranddenominatorbothtendtozero,
soweapplyl''Hopital''sruletogive
Nf0
Nf0
Hencethesequence(u
n)convergeslinearlyto,andtheasymptoticrate
ofconvergenceis...
Asymptoticallythismethodconvergesmoreslowlythanthestandard
secantmethod Its advantageis that iff(u
0andf(v
0haveopposite
signstheiterationis guaranteedto convergeto aroot lying in [u
0... and is therefore
veryclosetothenegativeroot Three,orpossiblyfour,iterationsshould
givethevalueoftheroot tosixdecimalplaces
Trang 5