1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual for optical fiber communications 4th edition by gerd keiser

15 87 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 381,83 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

To verify this, first we square both sides and add:... 2.6 Linearly polarized wave... 2.56a holds, so that the term in square brackets on the right-hand side in the above equation is not

Trang 1

Download Full Solution Manual for Optical Fiber Communications 4th Edition by Gerd Keiser

https://getbooksolutions.com/download/solution-manual-optical-fiber-communications-4th-edition-by-keiser

Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th ed., 2011

Problem Solutions for Chapter 2

2.1

E100cos 2108

t30

  ex 20cos 2108

t50

 40cos 2 108t210 ez

2.2 The general form is:

y = (amplitude) cos(t - kz) = A cos [2(t - z/)] Therefore

(a) amplitude = 8 m

(b) wavelength: 1/ = 0.8 m-1 so that  = 1.25 m

(c)  = 2(2) = 4

(d) At time t = 0 and position z = 4 m we have

y = 8 cos [2(-0.8 m-1)(4 m)]

= 8 cos [2(-3.2)] = 2.472

2.3 x1 = a1 cos (t - 1) and x2 = a2 cos (t - 2)

Adding x1 and x2 yields

x1 + x2 = a1 [cos t cos 1 + sin t sin 1]

+ a2 [cos t cos 2 + sin t sin 2]

= [a1 cos 1 + a2 cos 2] cos t + [a1 sin 1 + a2 sin 2] sin t Since the a's and the 's are constants, we can set

a1 cos 1 + a2 cos 2 = A cos  (1)

a1 sin 1 + a2 sin 2 = A sin  (2) provided that constant values of A and exist which satisfy these equations To verify this, first we square both sides and add:

Trang 2

A2 (sin2  + cos2 ) = a12sin21cos21

+ a22sin22 cos22 + 2a1a2 (sin 1 sin 2 + cos 1 cos 2)

or

A2 = a12a22 + 2a1a2 cos (1 - 2) Dividing (2) by (1) gives

tan  = a1sin1 a2sin2

a1cos1 a2cos2

Thus we can write

x = x1 + x2 = A cos  cos t + A sin  sin t = A cos(t - )

2.4 First expand Eq (2.3) as

Ey

E0 y= cos (t - kz) cos  - sin (t - kz) sin  (2.4-1) Subtract from this the expression

Ex

E0 xcos  = cos (t - kz) cos 

to yield

Ey

E0 y

-Ex

E0x cos  = - sin (t - kz) sin  (2.4-2)

Using the relation cos2  + sin2 = 1, we use Eq (2.2) to write

sin2 (t - kz) = [1 - cos2 (t - kz)] = 1 Ex

E0x





 





2











 (2.4-3)

Squaring both sides of Eq (2.4-2) and substituting it into Eq (2.4-3) yields

Trang 3

E0 y  Ex

E0xcos









2

= 1 Ex

E0x





 





2











 sin2

Expanding the left-hand side and rearranging terms yields

Ex

E0x





 





2

+ Ey

E0y





 





2

- 2 Ex

E0x





 



 Ey

E0y





 



 cos  = sin2

2.5 Plot of Eq (2.7)

2.6 Linearly polarized wave

2.7

(a) Apply Snell's law

n1 cos 1 = n2 cos 2

where n1 = 1, 1 = 33, and 2 = 90 - 33 = 57

 n2 =

cos 33

cos 57= 1.540

(b) The critical angle is found from

nglass sin glass = nair sin air with air = 90 and nair = 1.0

critical = arcsin 1

nglass= arcsin

1 1.540= 40.5

90

Glass

Air: n = 1.0

Trang 5

2.8

Find c from Snell's law n1 sin 1 = n2 sin c = 1

When n2 = 1.33, then c = 48.75

Find r from tan c =

r

12 cm , which yields r = 13.7 cm

2.9

Using Snell's law nglass sin c = nalcohol sin 90

where c = 45 we have

nglass =

1.45 sin 45= 2.05

2.10 critical = arcsin

doped

pure

n

n

= arcsin

460 1

450 1

= 83.3

2.11 Need to show that n1cos2n2cos1 0 Use Snell’s Law and the relationship

cos

sin tan

Air Water

12 cm

r

45

Trang 6

2.12 (a) Use either NA = n 12 n221/ 2

= 0.242

or

NA  n1 2= n1 2(n1 n2)

n1 = 0.243

(b) A = arcsin (NA/n) = arcsin 0.242

1.0



  = 14





50 1

00 1 sin n

n

1

2 1

 (c) The number of angles (modes) gets larger as the wavelength decreases

2.14 NA = n 12 n221/ 2

= n 12 n12(1 )21/ 2

= n1 2   21 / 2

Since  << 1, 2 << ;  NA  n1 2

2.15 (a) Solve Eq (2.34a) for jH:

jH = j 

 Er -

1

r

Hz

 Substituting into Eq (2.33b) we have

j  Er + Ez

r =  j

 Er 1

r

Hz













Solve for Er and let q2 = 2 - 2 to obtain Eq (2.35a)

(b) Solve Eq (2.34b) for jHr:

jHr = -j 

 E -

1

Hz

r Substituting into Eq (2.33a) we have

Trang 7

j  E+ 1

r

Ez

 = - j



 E1

Hz

r









Solve for E and let q2 = 2 - 2 to obtain Eq (2.35b)

(c) Solve Eq (2.34a) for jEr:

jEr = 1



1 r

Hz

 jrH





 Substituting into Eq (2.33b) we have



1

r

Hz

 jrH





+

Ez

r = jH

Solve for H and let q2 = 2 - 2 to obtain Eq (2.35d)

(d) Solve Eq (2.34b) for jE

jE= - 1

 jHr Hz

r



  Substituting into Eq (2.33a) we have

1

r

Ez

 -

 jHr Hz

r



 = -jHr

Solve for Hr to obtain Eq (2.35c)

(e) Substitute Eqs (2.35c) and (2.35d) into Eq (2.34c)

- j

q2

1

r

r Hz

  r

Ez

r







 

Hz

r 

r

Ez















= jEz Upon differentiating and multiplying by jq2/ we obtain Eq (2.36)

Trang 8

(f) Substitute Eqs (2.35a) and (2.35b) into Eq (2.33c)

- j

q2

1

r

r Ez

  r

Hz

r







 

Ez

r 

r

Hz















= -jHz Upon differentiating and multiplying by jq2/ we obtain Eq (2.37)

2.16 For  = 0, from Eqs (2.42) and (2.43) we have

Ez = AJ0(ur) ej(  t   z) and Hz = BJ0(ur) ej(  t   z)

We want to find the coefficients A and B From Eq (2.47) and (2.51),

respectively, we have

C = J(ua)

K(wa) A and D =

J(ua)

K(wa) B

Substitute these into Eq (2.50) to find B in terms of A:

A j

a



 

1

u2  1

w2



 = B uJJ'(ua)

(ua) K'(wa)

wK(wa)









For  = 0, the right-hand side must be zero Also for  = 0, either Eq (2.55a) or (2.56a) holds Suppose Eq (2.56a) holds, so that the term in square brackets on the right-hand side in the above equation is not zero Then we must have that B = 0, which from Eq (2.43) means that Hz = 0 Thus Eq (2.56) corresponds to TM0m modes

For the other case, substitute Eqs (2.47) and (2.51) into Eq (2.52):

0 = 1

u2 Bj

a J(ua)A1uJ'(ua)









Trang 9

+ 1

w2 Bj

a J(ua)A2wK'(wa)J(ua)

K(wa)









With k12 = 21 and k22 = 22 rewrite this as

B =

1 1 1

2

w u

ja

 (k1 J + k2 K) A

where J and K are defined in Eq (2.54) If for  = 0 the term in square brackets on the right-hand side is non-zero, that is, if Eq (2.56a) does not hold, then we must have that A

= 0, which from Eq (2.42) means that Ez = 0 Thus Eq (2.55) corresponds to TE0m modes

2.17 From Eq (2.23) we have

 = n12n22

2n12 = 1

2 1n22

n12









 << 1 implies n1  n2

Thus using Eq (2.46), which states that n2k = k2 k1 = n1k, we have

n22k2

k22 n12k2

k12  2

2.18 (a) From Eqs (2.59) and (2.61) we have

M 22a2

2 n12n2222a2

2 NA2

a  M

2



 

1/ 2 

NA 1000

2



 

1/ 2 0.85m 0.2 30.25m

Trang 10

Therefore, D = 2a =60.5 m

(b) M 2

2

30.25m

1.32m

414 (c) At 1550 nm, M = 300

2.19 From Eq (2.58),

V =

2 (25 m)

0.82 m (1.48)

2(1.46)2

= 46.5

Using Eq (2.61) M  V2/2 =1081 at 820 nm

Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm From Eq (2.72)

Pclad P



 total 43M-1/2 = 43 1080100%= 4.1%

at 820 nm Similarly, (Pclad/P)total = 6.6% at 1320 nm and 7.8% at 1550 nm

2.20 (a) At 1320 nm we have from Eqs (2.23) and (2.57) that V = 25 and M = 312

(b) From Eq (2.72) the power flow in the cladding is 7.5%

2.21 (a) For single-mode operation, we need V  2.40

Solving Eq (2.58) for the core radius a

a = V

2 n1

2n22

  1/ 2

= 2.40(1.32m)

2(1.480)2(1.478)21/ 2 = 6.55 m (b) From Eq (2.23)

NA = n 12 n221/ 2

= (1.480) 2 (1.478)21/ 2

= 0.077

(c) From Eq (2.23), NA = n sin A When n = 1.0 then

Trang 11

A = arcsin NA

n



 = arcsin 0.0771.0 = 4.4

2.22 n2 = n12NA2 = (1.458)2 (0.3)2= 1.427

a = V

2NA=

(1.30)(75)

2(0.3) = 52 m

2.23 For small values of  we can write V 2a

 n1 2

For a = 5 m we have  0.002, so that at 0.82 m

V 

2 (5 m)

0.82 m 1.45 2(0.002) = 3.514

Thus the fiber is no longer single-mode From Figs 2.18 and 2.19 we see that the LP01 and the LP11 modes exist in the fiber at 0.82 m

2.25 From Eq (2.77), Lp = 2

 =

nynx

For Lp = 10 cm ny - nx =

1.310 6 m

101m = 1.310-5

For Lp = 2 m ny - nx =

1.310 6m

2m = 6.510-7

Thus

6.510-7 ny - nx 1.310-5

2.26 We want to plot n(r) from n2 to n1 From Eq (2.78)

n(r) = n112(r / a)1 / 2

= 1.48 10.02(r / 25)1 / 2

Trang 12

n2 is found from Eq (2.79): n2 = n1(1 - ) = 1.465

2.27 From Eq (2.81)

M 

 2 a

2

k2n12  

 2

2an1



 

2

where

 = n1n2

n1 = 0.0135

At  = 820 nm, M = 543 and at  = 1300 nm, M = 216

For a step index fiber we can use Eq (2.61)

MstepV2

2 = 1 2

2a



 

2

n12 n22

At  = 820 nm, Mstep = 1078 and at  = 1300 nm, Mstep = 429

Alternatively, we can let  in Eq (2-81):

Mstep = 2an1



 

2

 =

1086 at 820 nm

432 at 1300 nm







2.28 Using Eq (2.23) we have

(a) NA = n12 n221/ 2

= (1.60)2(1.49)21/ 2

= 0.58

(b) NA = (1.458)2(1.405)21/ 2

= 0.39 2.29 (a) From the Principle of the Conservation of Mass, the volume of a preform rod section of length Lpreform and cross-sectional area A must equal the volume of the fiber drawn from this section The preform section of length Lpreform is drawn into a fiber of length Lfiber in a time t If S is the preform feed speed, then Lpreform = St Similarly, if s is the fiber drawing speed, then Lfiber = st Thus, if D and d are the preform and fiber diameters, respectively, then

Preform volume = Lpreform(D/2)2 = St (D/2)2

Trang 13

and Fiber volume = Lfiber (d/2)2 = st (d/2)2

Equating these yields

St D 2



 

2

= st d 2



 

2

d



 

2

(b) S = s d

D



 

2

= 1.2 m/s

0.125 mm

9 mm



 

2

= 1.39 cm/min

2.30 Consider the following geometries of the preform and its corresponding fiber:

We want to find the thickness of the deposited layer (3 mm - R) This can be done by comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber core-to-cladding cross-sectional areas:

Apreform core

Apreform clad=

Afiber core

Afiber clad

or

(32R2)

(4232) =

 (25)2

 (62.5)2(25)2 from which we have

R = 9 7(25)2

(62.5)2 (25)2









1/ 2

= 2.77 mm

4 mm

3 mm

R

25m

62.5 m

Trang 14

Thus, the thickness = 3 mm - 2.77 mm = 0.23 mm

2.31 (a) The volume of a 1-km-long 50-m diameter fiber core is

V = r2L =  (2.510-3 cm)2 (105 cm) = 1.96 cm3

The mass M equals the density  times the volume V:

M = V = (2.6 gm/cm3)(1.96 cm3) = 5.1 gm

(b) If R is the deposition rate, then the deposition time t is

t = M

R =

5.1 gm 0.5 gm / min = 10.2 min

2.32 Solving Eq (2.82) for  yields

 = K

Y



 

2

where Y =  for surface flaws

Thus

 =

(20 N / mm3 / 2)2

(70 MN/ m2)2 = 2.6010-4 mm = 0.26 m

2.33 (a) To find the time to failure, we substitute Eq (2.82) into Eq (2.86) and integrate (assuming that  is independent of time):

 b / 2

 i

 f

 d = AYbb

0

t

 dt which yields

1

1b

2

f1  b / 2 1i b/ 2

  = AYbbt

or

(b2)A(Y)b i(2  b)/ 2 f(2  b)/ 2

(b) Rewriting the above expression in terms of K instead of yields

Trang 15

t = 2

(b2)A(Y)b

Ki

Y



 

2  b

 Kf

Y



 

2  b









 2Ki

2  b

(b2)A(Y)b if Ki

b  2 << Kfb  2 or Ki2  b Kf2  b

Ngày đăng: 01/03/2019, 11:36

TỪ KHÓA LIÊN QUAN

w