1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Link download solution manual optical fiber communications 4th edition by gerd keiser

15 77 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 585,81 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

To verify this, first we square both sides and add: 1... Use Snell’s Law and the relationship... 2.56a holds, so that the term in square brackets on the right-hand side in the above equa

Trang 1

Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th

ed., 2011 Problem Solutions for Chapter 2

2.1

E  1 00co s 2  1 0 8 t  3 0  ex  2 0co s 2  1 0 8 t  5 0  ey

y = 8 cos [2  (-0.8  m-1

)(4  m)]

2.3 x1 = a1 cos (  t - 1) and x2 = a2 cos ( t - 2)

Adding x1 and x2 yields

equations To verify this, first we square both sides and add:

1

Trang 2

A2 (sin2 + cos2) = a

1 cos

2

1 

1 sin

+

2 2

2

2 + 2a1a2(sin1sin2

1 2 1 2

2 sin 

a cos   a cos 

Subtract from this the expression

E

0 y E

0x

(2.4-1)

(2.4-2)

Using the relation cos2 + sin2 = 1, we use Eq (2.2) to write

sin2 ( t - kz) = [1 - cos2 ( t - kz)] =

 E 

x 



(2.4-3)

Squaring both sides of Eq (2.4-2) and substituting it into Eq (2.4-3) yields

Trang 3

E y

E

0 y



2

cos 

1  x



2













sin2

Expanding the left-hand side and rearranging terms yields

E  E  E E

+

- 2

x  y

2.7

Air: n = 1.0









cos  = sin2

(a) Apply Snell's law

(b) The critical angle is found from

n

glass sin

glass = n

air sin

with air = 90 and nair = 1.0

n

Trang 5

2.8

Water



12 cm

12 cm

2.9

n

glass = 1.45

= 2.05

2.10 critical = arcsin npure

= arcsin

n

doped

1.450

2.11 Need to show that n 1 cos  2  n 2 cos  1  0 Use Snell’s Law and the relationship

Trang 6

2 2

or

n

1

1/ 2

= 0.242



)

= 0.243

 1.0  = 14

 1  n 2   1 1.00

2.13 (a) From Eq (2.21) the critical angle is  c  sin    sin   41 



n





2 2 1/ 2 2 2

= n1

2 1 / 2

Since  << 1, 2 <<  ; 

) 21/ 2

NA

 n 1 

j  Er + 

Er z = 

Solve for Er and let





q = 2 - 2 to obtain Eq (2.35a)

jHr = -j



Substituting into Eq (2.33a) we have

Trang 7

1 E  

Solve for E  and let q2 = 2

1 H 



 H

z

jEr =





= j  H 

j  H r

z



Substituting into Eq (2.33a) we have

z

2 



Trang 8

(f) Substitute Eqs (2.35a) and (2.35b) into Eq (2.33c)

= -j  Hz

- 2    r   

2.16 For  = 0, from Eqs (2.42) and (2.43) we have

Ez = AJ0(ur) e j(t z ) and Hz = BJ0(ur) e j(t z )

We want to find the coefficients A and B From Eq (2.47) and

(2.51), respectively, we have

K





(ua)

K



(ua)

Substitute these into Eq (2.50) to find B in terms of A:





a

 2

 1

 



For  = 0, the right-hand side must be zero Also for  = 0, either Eq (2.55a) or (2.56a) holds Suppose Eq (2.56a) holds, so that the term in square brackets on the right-hand side in the above equation is not zero Then we must have that B = 0, which from Eq

(2.43) means that Hz = 0 Thus Eq (2.56) corresponds to TM0m modes

For the other case, substitute Eqs (2.47) and (2.51) into Eq (2.52):

Trang 9

+ 1  jJ (ua)  A w K' (wa)J (ua) 

w

2

a

2

2

= 22 rewrite this as

ja  1 

w

u 2 2 

brackets on the right-hand side is non-zero, that is, if Eq (2.56a) does not hold, then we must have that A = 0, which from Eq (2.42) means that Ez = 0 Thus

Eq (2.55) corresponds to TE0m modes

2.17 From Eq (2.23) we have

 = n

=

1  1

2





Thus using Eq (2.46), which states that n2k = k2  k1 = n1k, we have

2 k 2

n

2

2.18 (a) From Eqs (2.59) and (2.61) we have

2 a2

2 a2

M 1/ 2  1000 1/ 2 0.85m



2

Trang 10

Therefore, D = 2a =60.5  m

(b)

(c) At 1550 nm, M = 300

2.19 From Eq (2.58),

(1.48) 2  2 1/

2

= 46.5

/2 =1081 at 820 nm

Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm From Eq (2.72)

 P clad





total

3

at 820 nm Similarly, (Pclad/P)total = 6.6% at 1320 nm and 7.8% at 1550 nm

2.20 (a) At 1320 nm we have from Eqs (2.23) and (2.57) that V = 25 and M = 312

(b) From Eq (2.72) the power flow in the cladding is

Solving Eq (2.58) for the core radius a

(b) From Eq (2.23)

NA =



2 

n

1

2 1/ 2

1/ 2

Trang 11

A = arcsin  NA  =

 n  arcsin

 0.077

 1.0

2.22 n2 = 2

2

=

2 2

= 1.427

V 2 (5

0.82

m  1.45 2(0.002) = 3.514

Thus the fiber is no longer single-mode From Figs 2.18 and 2.19 we see that

2.25 From Eq (2.77), Lp = 2 

n

y

x

For Lp = 10 cm

For Lp = 2 m

Thus

ny - nx =

ny - nx =

2 m

m

m

= 1.3  10-5

= 6.5  10-7

2.26

Trang 12

n2 is found from Eq (2.79): n2 = n1(1 - ) =

1.465 2.27 From Eq (2.81)

M   2 a k n   2    1   

1

where

 =n 1  n 2

n

= 0.0135

For a step index fiber we can use Eq (2.61)

M

2

 n 2  n 2 

At  = 820 nm, Mstep = 1078 and at  = 1300 nm, Mstep = 429

M

step =

 =



2.28 Using Eq (2.23) we have

(a) NA =



2

n

1



2 1/ 2

2

= 0.58



= 0.39

2.29 (a) From the Principle of the Conservation of Mass, the volume of a

volume of the fiber drawn from this section The preform section of length

Thus, if D and d are the preform and fiber diameters, respectively, then

Trang 13

and

Equating these yields

d



2

(b) S = s  d  2

 D = 1.2 m/s

 2

R

4 mm

3 mm

FIBER PREFORM

done by comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber core-to-cladding cross-sectional areas:

A

A

preform core preform clad

A

fiber core

fiber clad

or

)

 (3  R

)

 (62.5) 2  (25) 2

from which we have

= 2.77 mm

9



Trang 14

Thus, the thickness = 3 mm - 2.77 mm = 0.23 mm

(b) If R is the deposition rate, then the deposition time t is

Thus

3 / 2 ) 2

(70 MN/ m

2 2



) = 2.60 10-4 mm = 0.26  m

2.33 (a) To find the time to failure, we substitute Eq (2.82) into Eq (2.86)

 f 

   b / 2 d 

 i

t

0

dt

which yields

1

or

t =

f  b / 21

2

 b)/ 2 2  b)/ 2 (2 (

Trang 15

2  2  b Kf 2  b 

b     

b  2

Ngày đăng: 01/03/2019, 09:27