Using MATLAB, synthesize the periodic waveform for which the Fourier trigonometric Fourier series is 1 cos... Determine the Fourier coefficients an and bn of the first three harmonic t
Trang 1Chapter 17, Problem 1
Evaluate each of the following functions and see if it is periodic If periodic, find its period
(a) f ( t ) = cos π t + 2 cos 3 π t + 3 cos 5 π t
(b) y(t) = sin t + 4 cos 2 π t
(a) This is periodic with ω = π which leads to T = 2π/ω = 2
(b) y(t) is not periodic although sin t and 4 cos 2πt are independently
periodic
(c) Since sin A cos B = 0.5[sin(A + B) + sin(A – B)],
g(t) = sin 3t cos 4t = 0.5[sin 7t + sin(–t)] = –0.5 sin t + 0.5 sin7t
which is harmonic or periodic with the fundamental frequency
ω = 1 or T = 2π/ω = 2π
(d) h(t) = cos 2 t = 0.5(1 + cos 2t) Since the sum of a periodic function and
a constant is also periodic, h(t) is periodic ω = 2 or T = 2π/ω = π
(e) The frequency ratio 0.6|0.4 = 1.5 makes z(t) periodic
ω = 0.2π or T = 2π/ω = 10
(f) p(t) = 10 is not periodic
(g) g(t) is not periodic
Trang 2Chapter 17, Problem 2
Using MATLAB, synthesize the periodic waveform for which the Fourier
trigonometric Fourier series is
1 cos
Trang 3Chapter 17, Problem 3
Give the Fourier coefficients a0, an, and bn of the waveform in Fig 17.47 Plot the
amplitude and phase spectra
2
n cos(
n sin n
n sin n
2
n sin(
n cos n
n cos n
10 x
π ] = (5/(nπ))[3 – 2 cos nπ + cos(nπ/2)]
Trang 51 n
π π
+ ∑∞
=
Trang 65 0 ] x 2 x [ 2
1 dt ) t ( z
π
= π
− π
= π
− π
= ω
sin n
1 ntdt cos 2
1 ntdt cos 1
1 dt n cos ) t ( z
= π
+ π
−
= π
− π
= ω
even n
0,
odd n , n
6 nt
cos n
2 nt
cos n
1 ntdt sin 2
1 ntdt sin 1
1 dt n cos ) t ( z
6 5
Trang 70 ,
π π
Trang 83 3
t n sin n
3 1 3
t n sin n
π π
3 1 3
n cos
3
2
n
1
Trang 9+0
t n 2 sin 3
n 4 cos 1 n
3 3
t n 2 cos 3
n sin n
3 1
We can now use MATLAB to check our answer,
1 52
2 5
Trang 102 0
Trang 11Chapter 17, Problem 9
Determine the Fourier coefficients an and bn of the first three harmonic terms of the
rectified cosine wave in Fig 17.52
2 ,
T
183 3
10 4
/ sin )
4 ( 4
10 0 4 / cos 10 8
2 )
(
0 2
0 0
dt n t
40 cos
/ sin
2 5 ] 1 2 / [cos
π π
For n>1,
2
) 1 ( sin ) 1 (
20 2
) 1 ( sin ) 1 (
20 4
) 1 ( sin ) 1 (
20 4
) 1 ( sin )
+ +
=
−
− +
+ +
n
n n
n n
t n n
π
π π
π π
π π
0 sin
10 2 sin 4
20 a , 244 4 2 / sin
20 5
=
= π π + π π
=
Thus,
321
32
1
Trang 13−
T
0
01
10
2/jn2
/jnt
ojn
4
1 dt e
) t ( y
−
− π
− π
−
22
2/jn
jn
2 e
jn
2 ) 1 2 / jn ( 4 / n
− π
+
− π π
+ π
− π
jn
2 e
jn
2 e
jn
2 ) 1 2 / jn ( e n
4 jn
2 n
4 4
222
2
But
2 / n sin j 2 / n sin j 2 / n cos e
, 2 / n sin j 2 / n sin j 2 / n cos
e 2 / n sin n 2 / n sin ) 1 2 / jn ( j 1 n
1 )
t (
−∞
=
π π + π
− π + π
Trang 14Chapter 17, Problem 12
* A voltage source has a periodic waveform defined over its period as
v(t) = t(2 π − t) V, 0 < t < 2 π
Find the Fourier series for this voltage
* An asterisk indicates a challenging problem
0
2 T
4 )
3 / t t ( 2
2 0 3
=
− π
π
=
− π π
0 2
T 0
n
t 2 ) nt cos(
n
2 1 dt ) nt cos(
) t t 2 ( T
2
+
− π
0 2
4 ) n 2 cos(
n n
1 ) 1 1 ( n
= π π
2 ( T
0
2
π π
− +
π
−
− π
0 2
2 3
0
n
1 )) nt cos(
nt ) nt (sin(
n
1 n
2
Hence, f(t) = ∑∞
=
− π
1
n 2
2
) nt cos(
n
4 3
2
0 n
4 n
4 π + π =
−
=
Trang 15π 2 ),
sin(
20
0 ,
t t
0
an = (2/T) ∫T ω
0h ( t ) cos( n ot ) dt = [2/(2π)] ⎢⎣ ⎡ ∫0π + ∫ππ − π ⎥⎦ ⎤
2
dt ) nt cos(
) t sin(
20 dt
) nt cos(
t sin 10
Since sin A cos B = 0.5[sin(A + B) + sin(A – B)]
sin t cos nt = 0.5[sin((n + 1)t) + sin((1 – n))t]
sin(t – π) = sin t cos π – cost sin π = –sin t
sin(t – π)cos(nt) = –sin(t)cos(nt)
2
dt )] t ] n 1 sin([
) t ] n 1 [sin([
20 dt )]
t ] n 1 sin([
) t ] n 1 [sin([
+
+ +
2 n
1
) t ] n 1 cos([
2 n
1
) t ] n 1 cos([
n 1
) t ] n 1 cos([
π +
−
−
+ +
) ] n 1 cos([
3 n
1
) ] n 1 cos([
3 n 1
3 n 1 3 5
Trang 16= [2/(2π)][ ∫0π10 sin t sin nt dt + ∫π2π20 ( − sin t ) sin nt dt
But, sin A sin B = 0.5[cos(A–B) – cos(A+B)]
sin t sin nt = 0.5[cos([1–n]t) – cos([1+n]t)]
bn = (5/π){[(sin([1–n]t)/(1–n)) – (sin([1+n]t)/ ( 1 + n )]0π + [(2sin([1-n]t)/(1-n)) – (2sin([1+n]t)/ + π2π
)]
n 1
n 1
) ] n 1 sin([
60 30
Trang 1710 2
)
(
n
n nt n
) 4 / n sin(
1 n
10 ) nt 2 cos(
) 4 / n cos(
1 n
10 2
+
=
10 sin
1 10 cos 1
4 10
)
(
n
nt n
nt n
t
f
(a) in a cosine and angle form
(b) in a sine and angle form
Chapter 17, Solution 15
(a) Dcos ωt + Esin ωt = A cos(ωt - θ)
where A = D2 + E2 , θ = tan-1(E/D)
n
1 ) 1 n (
2
1 n tan nt 10 cos n
1 ) 1 n (
16 10
(b) Dcos ωt + Esin ωt = A sin(ωt + θ)
where A = D2 + E2 , θ = tan-1(D/E)
+ +
+
1
3 1 6
2
n 4 tan nt 10 sin n
1 ) 1 n ( 16 10
Trang 18Chapter 17, Problem 16
The waveform in Fig 17.55(a) has the following Fourier series:
V 5
cos 25
1 3 cos 9
1 cos
Trang 19If v2(t) is shifted by 1 along the vertical axis, we obtain v2*(t) shown below, i.e v2*(t) = v2(t) + 1
Comparing v2*(t) with v1(t) shows that
v2*(t) = 2v1((t + to)/2) where (t + to)/2 = 0 at t = -1 or to = 1
Hence v2*(t) = 2v1((t + 1)/2)
But v2*(t) = v2(t) + 1
v2(t) + 1 = 2v1((t+1)/2) v2(t) = -1 + 2v1((t+1)/2) = -1 + 1 − π 82 ⎢ ⎣ ⎡ cos π ⎜ ⎝ ⎛ + t 2 1 ⎟ ⎠ ⎞ + 9 1 cos 3 π ⎜ ⎝ ⎛ + t 2 1 ⎟ ⎠ ⎞ + 25 1 cos 5 π ⎜ ⎝ ⎛ + t 2 1 ⎟ ⎠ ⎞ + L ⎥ ⎦ ⎤
2
5 2
t 5 cos 25
1 2
3 2
t 3 cos 9
1 2 2
t cos
2
t 5 sin 25
1 2
t 3 sin 9
1 2
t sin
82
Chapter 17, Problem 17
*
Trang 20Determine if these functions are even, odd, or neither
(a) 1 + t (b) t2 − 1 (c) cos n π t sin n π t
(d) sin2π t (e) t
e−
Chapter 17, Solution 17
We replace t by –t in each case and see if the function remains unchanged
(a) 1 – t, neither odd nor even
(b) t2 – 1, even
(c) cos nπ(-t) sin nπ(-t) = - cos nπt sin nπt, odd
(d) sin2 n(-t) = (-sin πt)2 = sin2 πt, even
(e) et, neither odd nor even
Chapter 17, Problem 18
Trang 21Determine the fundamental frequency and specify the type of symmetry present in the functions in Fig 17.56
Figure 17.56
For Probs 17.18 and 17.63
Chapter 17, Solution 18
(a) T = 2 leads to ωo = 2π/T = π
f1(-t) = -f1(t), showing that f1(t) is odd and half-wave symmetric
Trang 22Obtain the Fourier series for the periodic waveform in Fig 17.57
π π
Chapter 17, Problem 20
Trang 23Find the Fourier series for the signal in Fig 17.58 Evaluate f(t) at t = 2 using the
first three nonzero harmonics
Figure 17.58
For Probs 17.20 and 17.67
Chapter 17, Solution 20
Trang 24This is an even function
bn = 0, T = 6, ω = 2π/6 = π/3
ao = ∫ = ⎢⎣ ⎡ ∫ − ∫3 ⎥⎦ ⎤
2
2 1
2 / T
6
2 dt ) t ( T
2
= 1 3 ⎢⎣ ⎡ ( 2 t − 4 t ) + 4 ( 3 − 2 ) ⎥⎦ ⎤
2 1
an = ∫T/4 π
0 ( t ) cos( n / 3 ) dt T
4
= (4/6)[ ∫2 − π
1( 4 t 4 ) cos( n t / 3 ) dt + ∫3 π
2 4 cos( n t / 3 ) dt ] =
3
2
2
1 2
t n sin n
3 6
16 3
t n sin n
3 3
t n sin n
t 3 3
t n cos n
9 6
n cos 3
n 2 cos n
1 24 2
At t = 2,
f(2) = 2 + (24/π2)[(cos(2π/3) − cos(π/3))cos(2π/3)
+ (1/4)(cos(4π/3) − cos(2π/3))cos(4π/3) + (1/9)(cos(2π) − cos(π))cos(2π) + -]
= 2 + 2.432(0.5 + 0 + 0.2222 + -) f(2) = 3.756
Chapter 17, Problem 21
Trang 25Determine the trigonometric Fourier series of the signal in Fig 17.59
2
t n cos ) t 1 ( 2 4
4 dt ) t n cos(
) t ( T
+
1
t n cos 2
n cos 1 n
8 2
1
Chapter 17, Problem 22
Trang 26Calculate the Fourier coefficients for the function in Fig 17.60
Figure 17.60
For Prob 17.22
Chapter 17, Solution 22
Calculate the Fourier coefficients for the function in Fig 16.54
Figure 16.54 For Prob 16.15 This is an even function, therefore bn = 0 In addition, T=4 and ωo = π/2
0 2 1
0
2 T
4
2 dt ) t ( T
4
4 dt ) nt cos(
) t ( T 4
1
0 2
n
t 2 ) 2 / t n cos(
n
4 4
=
n
8 ) 1 ) 2 / n (cos(
n
162
π +
− π π
Chapter 17, Problem 23
Trang 27Find the Fourier series of the function shown in Fig 17.61
2
4 dt ) t n sin(
) t ( T
4
0 2
2 sin( n t ) n t cos( n t ) n
2
π π
− π π
) n sin(
n
) 1 ( 2
Chapter 17, Problem 24
In the periodic function of Fig 17.62,
Trang 28(a) find the trigonometric Fourier series coefficients a2 and b2,
(b) calculate the magnitude and phase of the component of f(t) that has
−
=
11
1 9
1 7
1 5
4
f(t) = 1 + t/π, 0 < t < π
bn = ∫π + π
π 0 ( 1 t / ) sin( nt ) dt 2
n
1 ) nt cos(
n
1 2
= [2/(nπ)][1 − 2cos(nπ)] = [2/(nπ)][1 + 2(−1)n+1] a2 = 0, b2 = [2/(2π)][1 + 2(−1)] = −1/π = −0.3183 (b) ωn = nωo = 10 or n = 10
a10 = 0, b10 = [2/(10π)][1 − cos(10π)] = −1/(5π)
Trang 29Thus the magnitude is A10 = 2
10
a10 + = 1/(5π) = 0.06366 and the phase is φ10 = tan−1(bn/an) = −90°
=
π
− π
1 n
) nt sin(
)]
n cos(
2 1 [ n
f(π/2) = ∑∞
=
π π
− π
1 n
) 2 / n sin(
)]
n cos(
2 1 [ n
For n = 1, f1 = (2/π)(1 + 2) = 6/π For n = 2, f2 = 0
For n = 3, f3 = [2/(3π)][1 − 2cos(3π)]sin(3π/2) = −6/(3π) For n = 4, f4 = 0
For n = 5, f5 = 6/(5π), Thus, f(π/2) = 6/π − 6/(3π) + 6/(5π) − 6/(7π) -
= (6/π)[1 − 1/3 + 1/5 − 1/7 + -]
f(π/2) ≅ 1.3824 which is within 8% of the exact value of 1.5
Trang 30Determine the Fourier series representation of the function in Fig 17.63
Figure 17.63
For Prob 17.25
Chapter 17, Solution 25
Trang 31This is a half-wave (odd) function since f(t−T/2) = −f(t)
ao = 0, an = bn = 0 for n = even, T = 3, ωo = 2π/3
For n = odd,
5.1
3
4 tdt n cos ) t ( 3
4
=
102
nt 2 sin n 2
t 3 3
nt 2 cos n 4
9 3
2 1 3
n 2 cos n
322
0
5.1
3
4 dt ) t n sin(
) t ( 3 4
=
1
0 2
nt 2 cos n 2
t 3 3
nt 2 sin n 4
9 3
2 3
n 2 sin n
322
odd
n 1
n
22
22
3
nt 2 sin 3
n 2 cos n
2 3
n 2 sin n 3
3
nt 2 cos 3
n 2 sin n
2 1 3
n 2 cos n 3
Chapter 17, Problem 26
Trang 32Find the Fourier series representation of the signal shown in Fig 17.64
Figure 17.64
For Prob 17.26
Chapter 17, Solution 26
T = 4, ωo = 2π/T = π/2
Trang 33ao = ∫ = ⎢⎣ ⎡ ∫ + ∫ + ∫34 ⎥⎦ ⎤
3 1
1 0
T
4
1 dt ) t ( T
1
= 1
an = ( t ) cos( n t ) dt T
π π +
π π
2 2
t n sin n
4 2
t n sin n
2 2
n sin n 4
bn = ∫T ω
0 ( t ) sin( n ot ) dt T
2
2
t n sin 1 dt 2
t n sin 2 dt 2
t n sin 1 4 2
−
π π
2 2
t n cos n
4 2
t n cos n
2 2
= [ cos( n ) 1 ]
n
4
− π π
π π
− π π
+
1
n
) 2 / t n sin(
) 1 ) n (cos(
) 2 / t n cos(
)) 2 / n sin(
) 2 / n 3 (sin(
Trang 34(a) specify the type of symmetry it has,
Trang 352 1
t n cos n
t 2 2
t n sin n
4 dt
2
t n sin t 4
= π
∫
2
n cos n
2 2
n sin n
= 4(−1)(n−1)/2/(n2π2), n = odd
−2(−1)n/2/(nπ), n = even a3 = 0, b3 = 4(−1)/(9π2) = –0.04503
(c) b1 = 4/π2, b2 = 1/π, b3 = −4/(9π2), b4 = −1/(2π), b5 = 4/(25π2)
Frms = + ∑ ( + 2)
n
2 n
2
2
1 a
Frms2 = 0.5Σbn2 = [1/(2π2)][(16/π2) + 1 + (16/(81π2)) + (1/4) + (16/(625π2))] = (1/19.729)(2.6211 + 0.27 + 0.00259)
Trang 364 dt ) t n cos(
) t ( T
4
=
1
0 2
n
t ) t n cos(
n
1 ) t n sin(
=
1
0 2
n
t ) t n sin(
n
1 ) t n cos(
n
1 4
− π π
− = 4/(nπ), n = odd
1
k 2 2
) n sin(
n
4 ) n cos(
Trang 37+ π
− 2 cos( nt ) nt sin( nt ) 0n
2
= 4/(n2π)
− π
) nt sin(
) t (
n
1 ) nt cos(
Trang 38ot
ojn
T
1 dt e
) t ( T
o
T
2 c
(b) The first term on the right hand side of (1) vanishes if f(t) is odd Hence,
Chapter 17, Problem 31
Trang 39Let an and bn be the Fourier series coefficients of f(t) and let ωo be its fundamental
frequency Suppose f(t) is time-scaled to give h(t) = f(α t) Express the '
2 ' T
2 ' /
T ' T ),
⎯→
⎯ α
= α
o
' T
2 tdt ' n cos ) t ( h ' T
2 ' a
Let α t = λ , d t = d λ / α , α T ' = T
nT
Similarly, bn' = bn
Chapter 17, Problem 32
Trang 40Find i(t) in the circuit of Fig 17.68 given that
1 1
I = [1/(1 + 2 + jωn2)]Is = Is/(3 + j6n)
n 4 1 n
1 )
3 / n ( tan n 1 3
0 n 1
2 2
1 2
2
−
∠ +
=
∠ +
+
1 n
1 2
2 cos( 3 n tan ( 2 n ))
n 4 1 n 3
1 3
1
Chapter 17, Problem 33
In the circuit shown in Fig 17.69, the Fourier series expansion of vs(t) is
Trang 411 4
For the DC case, the inductor acts like a short, Vo = 0
For the AC case, we obtain the following:
so
oo
so
V V n
5 n 2 j 1
0 4
V jn n j
V 10
V V
=
π + π +
−
) 5 n
2 ( j n
4 n
5 n 2 j 1
1 n
4 A
n
5 n 2 j 1
V V
22n
n
so
− π +
π
= Θ
−
=
Θ
− π +
π
n
5 n
2 tan
; ) 5 n
2 ( n
4
2222
2n
V ) t n sin(
A )
t ( v
=
Chapter 17, Problem 34
Obtain vo(t) in the network of Fig 17.70 if
Trang 42tan ) 2 / ( ) 4 / n [(
4 n n 20
) n / ) 2 n ((
tan ) 2 n ( n n
) 2 / ) 4 / n ((
20
2 1 2
2
2 1 2
2 2 2
−
− π
− π
∠ +
=
−
∠
− +
π
− π
2 1 2
2 n tan 2 4
n nt cos 4 n n 20
Trang 43If vs in the circuit of Fig 17.71 is the same as function f2(t) in Fig 17.56(b), determine the dc component and the first three nonzero harmonics of vo(t)
Figure 17.71
For Prob 17.35
Chapter 17, Solution 35
Trang 44PROPRIETARY MATERIAL © 2007 The McGraw-Hill Companies, Inc All rights reserved No part
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the prior
If vs in the circuit of Fig 17.72 is the same as function f2(t) in Fig 17.57(b), determine the dc component and the first three nonzero harmonics of vo(t)
Figure 16.64 For Prob 16.25
Figure 16.50(b) For Prob 16.25
The signal is even, hence, bn = 0 In addition, T = 3, ωo = 2π/3
1 3
4
n
2 )
3 / n 2 sin(
n
6 )
3 / n 2 sin(
n
3 3
π vs(t) = ∑∞
=
π π
π
−
1 n
) 3 / t n cos(
) 3 / n 2 sin(
n
1 2 3 4
Now consider this circuit,
+
−
+
vo
Trang 45Let Z = [-j3/(2nπ)](1)/(1 – j3/(2nπ)) = -j3/(2nπ - j3)
Therefore, vo = Zvs/(Z + 1 + j2nπ/3) Simplifying, we get
vo =
) 18 n
4 ( j n 12
v 9 j
2 2
s
− π +
π
−
For the dc case, n = 0 and vs = ¾ V and vo = vs/2 = 3/8 V
We can now solve for vo(t)
3
t n 2 cos A 8
31 n
π
π π
n 2
3 3
n tan 90
and 6
3
n 4 n
16
) 3 / n 2 sin(
n
6
n 2
2 2 2
2 n
where we can further simplify An to this,
81 n
4 n
) 3 / n 2 sin(
9 A
4 4 n
+ π π
π
=
Chapter 17, Problem 36
Trang 46* Find the response io for the circuit in Fig 17.72(a), where v(t) is shown in Fig
Trang 471 2 0
−
100 5
For dc component, ω0 = 0 which leads to I0 = 0
For the nth harmonic,
nn2
2
) 50 n
( j n
10 n
100 j n j 5
0 n
10
− π +
π
= π
− π +
°
∠ π
=
where
2 2 1
n
π φ
Trang 48If the periodic current waveform in Fig 17.73(a) is applied to the circuit in Fig 17.73(b),
Trang 49) n cos 1 ( 2 90 ) n cos 1 ( n
2 jn 1
jn
22
π +
− π π +
π
1
2 2 1
1
o n
If the square wave shown in Fig 17.74(a) is applied to the circuit in Fig 17.74(b), find
the Fourier series for vo(t)
Trang 50π +
=
1k
n
1 2 2
1 ) t ( v
π
= ω ω
+
ω
j 1
j
n
no
1o
12
2
oo
n 1
n tan 2
90 n
2 n tan n
1
90 n V
π +
• π
∠ π +
∠ π
−
1 k n ), n tan t n cos(
n 1
2 )
Trang 511 k
), t n sin(
n
1 10
T = 2, ωo = 2π//T = π, ωn = nωo = nπ For the DC component, io = 5/(20 + 40) = 1/12
For the kth harmonic, Vs = (10/(nπ))∠0°
100 mH becomes jωnL = jnπx0.1 = j0.1nπ
50 mF becomes 1/(jωnC) = −j20/(nπ)
Let Z = −j20/(nπ)||(40 + j0.1nπ) =
π +
+ π
−
π +
π
−
n 0 j 40 n
20 j
) n 0 j 40 ( n
20 j
j0.1nπ
+
−
−j20/(nπ)
Trang 52=
) 20 n
0 ( j n 40
800 j n n
0 j n 40 20 j
n 0 j 40 ( 20 j
2 2 2
− π
= π +
π +
−
π +
−
Zin = 20 + Z =
) 20 n
0 ( j n 40
) 1200 n
( j n 802
2 2
2 2
− π +
π
− π +
π
I =
)]
1200 n
2 ( j n 802 [ n
) 200 n
( j n 400 Z
V
2 2
2 2
in
s
− π +
π π
− π + π
=
Io =
) 20 n
0 ( j n 40
I 20 j )
n 0 j 40 ( n
20 j
I n
20 j
2
2π − +
π
−
= π +
+ π
2 ( j n 802 [ n
200 j
2
2π − +
π π
−
=
2 2
2 2
2 2 1
) 1200 n
( ) 802 ( n
)}
n 802 /(
) 1200 n
{(
tan 90
200
− π + π
π
− π
+
1 k
n
n sin( n t ) I
200 20
°
=
n 802
1200 n
2 tan 90
2 2 1 n
In =
) 1200 n
( ) n 804 ( n
1
2 2
Trang 531 dt ) t ( v T
0
2 1
Trang 54an = ∫ π = ∫1 − π
0
T
0v ( t ) cos( n t ) dt 2 ( 1 t ) cos( n t ) dt T
2 =
1
0 2
n
t ) t n cos(
n
1 ) t n sin(
n
1 2
− π π
=
2 2
2 2 2
2
) 1 n (
4 odd
n , n 4
even n
, 0 ) n cos 1 ( n
2
− π
=
= π
=
= π
− π
0
T
0v ( t ) sin( n t ) dt 2 ( 1 t ) sin( n t ) dt T
− π π
−
n
2 )
t n cos(
n
t ) t n sin(
n
1 ) t n cos(
n
1 2
1
0 2
2 1
n
) 1 n (
16 n
4 A
, n 2
) 1 n ( tan
− π
+ π
=
− π