1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Solution manual fundamentals of electric circuits 3rd edition chapter18

74 115 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 74
Dung lượng 554,41 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Find the Fourier transform of the waveform shown in Fig... Obtain the Fourier transforms of the signals shown in Fig... Determine the Fourier transforms of the signals in Fig... Obtain t

Trang 1

f = δ + − δ + − δ − + δ −

2 j j j 2

e ) ( F

j ω ω = ω− ω − − ω + − ω = 2 cos 2 ω − 2 cos ω

F(ω) =

ω

ω

− ω

j

] cos 2

[cos 2

Trang 2

1 t 0 , ) t (

or ω = ∫1 − ω

0 t

j dt e t ) (

F

But ∫ = ( ax − 1 ) + c

a

e dx e

ax ax

=

0 2

j

) 1 t j ( j

e )

(

2 + ω − ω

Trang 3

1 ) t ( ' f , 2 t 2 , 2

1 ) t ( = − < < = − < <

t j t

) j ( 2

e dt e t 2

1 ) ( F

12 F(ω) = j2( 2 ω cos 2 ω − sin 2 ω )

ω

Trang 4

Chapter 18, Problem 4

Find the Fourier transform of the waveform shown in Fig 18.29

Figure 18.29

For Prob 18.4

Trang 5

Chapter 18, Solution 4

4 sin 4 cos 4

e j 2 e

2 4 e j 2 e 2 ) ( G ) j (

) 1 t ( 2 ) 1 t ( 2 ) t ( 4 ) 1 t ( 2 ) 1 t ( 2 g

jj

jj

2

+ ω ω

− ω

= ω ω

− δ′

− δ

− δ + + δ′

+ + δ

−ω

ω

) 1 sin (cos

4 ) (

ω

= ω

t

0

2 g’

–2 –1

–2 –1

2δ’(t+1)

–2δ(t–1)

1 –2δ(t+1)

–2δ’(t–1)

Trang 7

− ω

= ω

= ω ω

δ′

− δ

− + δ

) t ( 2 ) 1 t ( ) 1 t ( ) t ( h

jj

h”(t)

0 1

–δ(t–1) δ(t+1)

t

1

–2δ(t) –1

h’(t)

0 1

Trang 8

Find the Fourier transforms of both functions in Fig 18.31 on the following page

Trang 9

10δ(t)

0 1 2 -5

Take the Fourier transform of each term

(jω)2G(jω) = 10jω – 5jωe–jω – 5e–jω + 5e–j2ω which leads to

G(jω) = (–10jω + 5jωe–jω + 5e–jω – 5e–j2ω )/ω2

Chapter 18, Problem 7

Trang 10

Find the Fourier transforms of the signals in Fig 18.32

2 ( )

Trang 11

Obtain the Fourier transforms of the signals shown in Fig 18.33

j2

21tj1

0tj

21

tj1

0

tj

) 1 t j ( e

2 e

j

4 e

j

2

dt e ) t 2 4 ( dt e 2

)

(

F

− ω

− ω

− ω

+ ω

=

− +

=

ω

ω

−ω

−ω

ω

−ω

−ω

ω

− ω

− ω

+ ω

+ ω

=

j

4 j

2 e

j

2 2 ) ( F

(b) g(t) = 2[ u(t+2) – u(t-2) ] - [ u(t+1) – u(t-1) ]

ω

ω

− ω

ω

=

ω ) 4 sin 2 2 sin (

G

Chapter 18, Problem 9

Trang 12

Determine the Fourier transforms of the signals in Fig 18.34

=

ω ) 2 sin 2 4 sin (

Y

(b) Z ( ) ( 2 t ) e dt 2 e ( j t 1 ) 2 2 e ( 1 j )

2

j2

101

tjt

ω

− ω

=

− ω

− ω

Trang 13

Obtain the Fourier transforms of the signals shown in Fig 18.35

0 t , e e

t

t )

ω

− ω

1 0

t j t t

j t t

e ) t ( y ) ( Y

0

t j 1 ( 0 1

t j 1 (

) j 1 (

e j

1

e

ω +

+ ω

ω

− ω + ω

ω + ω

− ω +

j 1

sin j cos j

1

sin j cos e 1

+

Chapter 18, Problem 11

Trang 14

Find the Fourier transform of the “sine-wave pulse” shown in Fig 18.36

t j t j t j t

j 2

1 dt e t sin )

e ( j 2 1

+ π

− ω

0

t ) ( j 2 0 t ) ( j

) ( j

e e

) ( j

1 j

2 1

= ⎜⎜ ⎝ ⎛ π − − ω + − π + ω ⎟⎟ ⎠ ⎞

ω

− ω

− j 2 1 e j 2

e 1 2 1

( π + π − ω)

ω

− π

2

) (

2 1

Chapter 18, Problem 12

Trang 15

Find the Fourier transform of the following signals

j

ω ω

Trang 16

Find the Fourier transform of the following signals:

(a) We know that F [cos at ] = π [ δ ( ω − a ) + δ ( ω + a )]

Using the time shifting property,

) a ( e ) a ( e

)]

a ( ) a ( [ e

)]

a 3 / t ( a

[cos − π = π −jωπ/ a δ ω − + δ ω + = π −jπ/3δ ω − + π jπ/3δ ω + F

(b) sin π ( t + 1 ) = sin π t cos π + cos π t sin π = − sin π t

g(t) = -u(t+1) sin (t+1)

Let x(t) = u(t)sin t, then 2 2

1

1 1 ) j (

1 )

( X

ω

= + ω

= ω Using the time shifting property,

1

e e

1

1 )

(

G

2

jj

)]

b ( Y ) b (

1 t j (

e j

e dt e ) t 1

j2

402

tj4

0

tjt

ω

− ω

− ω

=

− ω

− ω

− ω

Trang 17

Find the Fourier transforms of these functions:

(a) f(t) = et cos(3t + π )u(t)

(b) g(t) = sin π t[u(t + 1) – u(t – 1)]

(c) h(t) = e− 2tcos π tu(t – 1)

(d) p(t) = e− 2tsin 4tu(–t)

(e) q(t) = 4 sgn(t – 2) + 3 δ (t) – 2u(t – 2)

Chapter 18, Solution 14

Trang 18

(a) ) cos( 3 t + π ) = cos 3 t cos π − sin 3 t sin π = cos 3 t ( − 1 ) − sin 3 t ( 0 ) = − cos( 3 t

) t ( u t 3 cos e ) t ( = − − tF(ω) = ( )

j 1

2 + ω +

ω +

(b)

[ u ( t 1 ) u ( t 1 ) ]

t cos )

− ω π

= ω ω

ω π

Alternatively, we compare this with Prob 17.7

π

= ω

=

2 2

e ) ( F G

j 22 sin2

π

− ω

ω π

ω π

Trang 19

(c) t cos π ( t − 1 ) = cos π t cos π + sin π t sin π = cos π t ( − 1 ) + sin π t ( 0 ) = − cos π Let x ( t ) = e− 2 t − 1 )cos π ( t − 1 ) u ( t − 1 ) = − e2h ( t )

and y ( t ) = e− 2 tcos( π t ) u ( t )

2 2) j 2 (

j 2 )

( Y

π + ω +

ω +

= ω

) 1 t ( x ) t (

ω

−ω

=

ω ) X ( ) e j(

Y

jj 2

e j 2 ) ( X

π + ω +

ω +

=

) ( H e ) (

X ω = − 2 ω

) ( X e ) (

H ω = − − 2 ω

2 jj 2

e j 2

π + ω +

ω +

(d) Let x ( t ) = e− 2 tsin( − 4 t ) u ( − t ) = y ( − t )

) t ( x ) t (

p = − where ) y ( t ) = e2 tsin 4 t u ( t

4 j

2

j 2 )

( Y

+ ω +

ω +

= ω

j 2 )

( Y ) (

+ ω

ω

= ω

= ω

= ω

=

ω ) X ( ) (

p

2 j

2 +

− ω

− ω

j

1 ) ( 2 3 e

j

8 ) (

− + ω

= ω

Q(ω) = ej 2 3 2 ( ) e j 2

j

6 ω + − πδ ω − ωω

Chapter 18, Problem 15

Trang 20

Find the Fourier transforms of the following functions:

) ( ) 0 ( F j

) ( G

ω δ π + ω

ω

=

) ( ) 1 ( 2 j

e

2 j

ω δ

− πδ + ω

= ω

1 ) ( F

2

j 3

Chapter 18, Problem 16

Trang 21

* Determine the Fourier transforms of these functions:

ω

ω π

2 t

4

ω π

− 4

(b) e−at 2 2

a

a 2 ω +

e 4

Chapter 18, Problem 17

Trang 22

Find the Fourier transforms of:

(a) cos 2tu(t) (b) sin 10tu(t)

Chapter 18, Solution 17

(a) Since H(ω) = F ( 0 ) [ F ( 0) ( F 0) ]

2

1 ) t ( t

where F(ω) = F [ ] ( ) ( ) , 2

j

1 t

ω + ω πδ

− ω πδ + + ω + + ω πδ

=

ω

2 j

1 2

2 j

1 2

2

1 H

− ω + + ω

− ω δ + + ω δ

π

=

2 2

2 2

2

j 2 2

2

4

j 2 2

ω

− ω δ + + ω δ π

(b) G(ω) = F [ 0 ] [ F ( 0) ( F 0) ]

2

j ) t ( t

where F(ω) = F [ ] ( ) ( )

ω + ω πδ

=

j

1 t

u

( ) ω = ⎢ ⎣ ⎡ πδ ( ω + ) ( + ω + ) − πδ ( ω − ) ( − j ω − 10 ) ⎥ ⎦ ⎤

1 10

10 j

1 10

2

j G

j 2

j 10 10

10 2

j

2 − ω

− ω δ

− + ω δ π

Chapter 18, Problem 18

Trang 23

Given that F( ω ) = F[f(t)], prove the following results, using the definition of Fourier

Trang 24

Find the Fourier transform of

f(t) = cos 2 π t[u(t) – u(t – 1)]

− π

0

t 2 j t 2 j t

j

( ) ω = ∫1[ − ( ω + π ) + − ( ω − π ) ]

0

t 2 j t 2

e 2

1 F

1 0

t 2 j t

2

2 j

1 e

2 j

1 2

+ π

+ ω

− +

π + ω

= − ω+ π − ω− π

2 j

1 e

2 j

1 e

+ π + ω

1 j

1 e 2

1 F

Chapter 18, Problem 20

Trang 25

(a) Show that a periodic signal with exponential Fourier series

Trang 26

t jn

n c

(b) T = 2 π 1

T

2

o = π = ω

jn

2

1 dt e t f T

1

( e 1 )

n 2

j e

jn

1 2

= π

−, n even0

0 n , odd n , n j

=

0 n

2

1 dt 1 2

1 c

jnt

e n

j 2

1 )

− δω

odd

n 0 n n

n n

j 2

1

Chapter 18, Problem 21

Trang 27

Show that

∫−∞∞

2sin

1 dt ) t (

ω π

1 a 2 dt ) 1 ( dt ) t ( f

22

aa22

or

a a 4

a 4 d a

a sin

e e ) t ( t

sin ) t

o

o o

− ω

− ω

e ) t ( j 2

= [ F ( o) ( F o) ]

j 2

1 ω − ω − ω + ω

Chapter 18, Problem 23

Trang 28

If the Fourier transform of f(t) is

F( ω ) =

) 5 )(

/ j 5 3 / j 2

10 3

/ j 15 2 / j 2

10 2

1

+ ω + + ω

5 2

j 5 2 j 2

5

− ω +

− ω +

+ + ω + + ω +

(d) F [ ] ( ) ( ) ( + ω )( + ω )

ω

= ω ω

=

j 5 j 2

10 j F

j t ' f

t

dt t

( ) ω + π ( ) ( ) δ ω

ω

0 F j

F

10 x j

5 j 2 j

ω + ω + ω

=

= j ω ( 2 + j ω )( 5 + j ω ) + πδ ( ) ω

10

Trang 29

Chapter 18, Solution 24

(a) X ( ) ( ) ω = F ω + F [3]

ω + ω

(b) y ( ) ( t = f t − 2 ) ( ) ω = e− ω F ( ) ω =

Y j 2 je j 2 ( e j1 )

ω

ω

− ω

(c) If h(t) = f '(t)

ω ω

= ω ω

3 x 10 2

3 F 2

3 x 4 ) ( G , t 3

5 f 10 t 3

2 f 4 t g

5 3

j 6 1 e

2 3

= j 4 ( e j 3 / 2 1 ) j 10 ( e j 3 / 51 )

ω +

− ω

ω

− ω

Trang 30

1 (

Trang 31

1 +

⎯→

− +

1 ( u 2 ) 1 (

− + ω

=

ω

Trang 32

Chapter 18, Problem 27

Find the inverse Fourier transforms of the following functions:

(a) F(ω ) =

) 10 (

100 +

2 (

10

+ +

ω

j j

j

(c) H(ω ) =

1300 40

1 (

) ( +

ω

ω δ

j j

Chapter 18, Solution 27

+ +

= +

10 s

B s

A 10 s s

100 s

F

10 10

100 B , 10 10

10 j

10 F

+ ω

− ω

= ω f(t) = 5 sgn ( ) t10 e10 tu ( ) t

3 s

B s 2

A s 3 s 2

s 10 s

G

6 5

30 B

, 4 5

20

( )

3 j

6 2 j

4 G

+ ω

− + ω

=

= ω g(t) = 4 e2 tu ( ) − t6 e3 tu ( ) t

(c) ( )

60 1300

40 j j

60

+ + ω

= +

ω + ω

= ω

= + ω ω +

ω ω

δ π

=

2

1 2

1 1 j j 2

d e 2

1 t y

t j

π

4 1

Trang 33

Chapter 18, Problem 28

Find the inverse Fourier transforms of:

(a)

) 2

)(

5

(

) (

ω ω

(

) 2

)(

2

(

) 1 (

20

ω ω

5

ω

Trang 34

ω πδ π

= ω ω

π

) j 2 )(

j 5 (

e ) ( 2

1 d e ) ( F 2

1 )

t

(

t j t

5

(

1 2

1

0.05

− ω

+

− π

= ω +

ω ω

+ ω δ π

=

) 1 2 j )(

2 j (

e 2

10 d e ) 1 j ( j

) 2 ( 10 2

1 )

t

(

t 2 j t

j

=

− π

2 j 1

e 2

ω

+ + π

= ω ω + ω +

− ω δ π

=

) j 3 )(

j 2 (

e 2

20 d

) 5 3 )(

j 2 (

e ) 1 ( 20 2

1 )

t

(

jt t

j

= + π

=

) j 5 5

) ejt1 (

) j 5 ( j

5 )

j 5 (

) ( 5 ) (

ω + ω

+ ω +

ω πδ

= ω

+

ω πδ π

5

1 2

5 d e j 5

) ( 5 2

1 ) t (

1

1 B , 1 A , 5 s

B s

A ) s 5 ( s

5 ) s (

+ +

= +

=

5 j

1 j

1 ) (

F2

+ ω

− ω

= ω

t 5 t

5

2

1 e

) t sgn(

2

1 ) t (

= +

= f ( t ) f ( t ) )

t ( 1 2 u ( )e5 t

Trang 35

= 4 cos 3 t 2

(

t

t 2 sin 8 2

1 ) t (

π

= g(t) =

t

t 2 sin 4

π (c) Since

cos(at) πδ ( ω + a ) + πδ ( ω − a )

Using the reversal property,

) 2 t ( ) 2 t ( 2

cos

2 π ω ↔ πδ + + πδ −

or F -1[ 6 cos 2 ω ] = 3 δ t + 2 ) + 3 δ t2 )

Trang 36

= ω ω

= ω

⎯→

=

j a

1 ) ( X , j

2 ) ( Y )

t sgn(

a 2 2 j

) j a ( 2 ) ( X

) ( Y )

(

ω +

= ω

ω +

= ω

= ω ω

+

=

ω

j 2

1 ) ( Y , j 1

1 )

(

X

) t ( u e ) t ( ) t ( h j

2

1 1 j 2

j 1 )

(

ω +

= ω +

ω +

=

ω

(c) In this case, by definition, h ( t ) = y ( t ) = e−atsin bt u ( t )

Trang 37

= ω ω

+

= ω

j a

1 ) ( H , ) j a (

1 )

(

Y

2

) t ( u e ) t ( x j

a

1 ) ( H

) ( Y ) (

ω +

= ω

ω

= ω

(b) By definition, x ( t ) = y ( t ) = u ( t + 1 ) − u ( t − 1 )

(c )

ω

= ω ω

+

= ω

j

2 ) ( H , ) j a (

1 )

( Y

) t ( u e 2

a ) t ( 2

1 ) t ( x )

j a ( 2

a 2

1 ) j a ( 2

j )

= ω +

ω

= ω

ω

=

ω

Trang 38

Chapter 18, Problem 32

* Determine the functions corresponding to the following Fourier transforms:

(a) F1( ω ) =

1 +

2 1

) (

e j

+ ω

ω

e−( )t − 1u ( t − 1 ) and F ( ) − ω f(-t)

( )

1 j

e F

2

2 +

ω

−πe 2

If F2( ) ω = 2 e−ω, then

f2(t) = ( t 1 )

2

2 + π (d) By partial fractions

4 1 1

j 4 1 1

j 4 1 1

j 4 1 1

j 1 j

1

− ω

− ω

+ + ω

+ + ω

=

− ω + ω

= ω

Hence ( ) ( te e te e ) u ( ) t

4

1 t

ω +

ω δ π

= ω ω

π

=

2 j 1

e 2

1 d e F 2

1 t

Trang 39

* An asterisk indicates a challenging problem

ω π

= ω Applying duality property,

t

t sin j 2 t X 2

1 t f

− π

=

− π

= f(t) = 2 2

t

t sin j 2 π

ω

− ω

− ω ω

=

− ω

j

e j

e e

e

j 2 j

2

1 1 t sgn 2

1 t

1 1 t u t

= u ( t1 ) ( − u t2 )

Trang 41

t 2

1 –2 –1

20

0

g ‘(t)

t 2

Trang 42

e e

3 / j 2

1 3

1 ) (

ω +

= ω

+ + ω +

=

− ω + + ω

=

ω

) 5 ( j 2

1 )

5 ( j 2

1 2

1 )]

5 ( F ) 5 ( F [

ω

= ω ω

= ω

j 2

j ) ( F j ) ( Z

) j 2 (

1 )

( F ) ( F ) ( H

ω +

= ω ω

= ω

(e)

2

1 )

j 2 (

) j 0 ( j ) ( F d

d j ) (

ω +

= ω +

= ω ω

= ω

Trang 43

If the input signal to the circuit is vs(t) = t

e−4 u(t) V find the output signal Assume all

initial conditions are zero

Trang 44

=

ω

j 2

2 j j

2

By current division,

( ) ( ) ( )

ω + + ω

ω

= ω +

ω +

ω +

ω

= ω

ω

=

ω

4 j 8 2 j

2 j j

2

2 j 4

j 2

2 j I

I H

s o

H(ω) =

ω +

ω

3 j 4 j

Trang 46

j

1 dt e ) t 1 ( ) ( V

+ ω ω +

= ω

10 10

x j

10

) ( V

)

(

Trang 47

v && = δ − δ − + δ −

2 j j

2V ( ω ) = 1 − 2 e−ω + eωω

= ω +

= ω

j

2 j 1 j

1 2 Z

( )

ω

⋅ ω

= ω

ω

2 j 1

j 1 e e 2 Z

V

2 j j

ω + ω

= 0 5 0 5 e j 2 e j

j 5 0 j 1

But

5 0 s

B s

A ) 5 0 s ( s

1

+ +

=

ω +

− +

ω

=

j 5 0

2 e

e 5 0 5 0 j

2 I

i(t) = sgn( t 2 ) sgn( t 1 ) e u ( ) e u t 2 ) 2 e u t 1 )

2

1 ) sgn(

Trang 48

ω + ω

= + ω

− ω

=

− ω + ω + ω +

j 2

9 j 4 j

2

j 4 j V 4 2 j

0 2 j

V 2 V j 2

j 2

1 V

22

V(ω) =

) j 2 4 )(

j 2 (

) 2 j 5 4 ( j 2

ω

− ω +

ω + ω

2

+ V

0.5s 1/s

ω + j

2

Trang 49

Chapter 18, Problem 42

Obtain the current io(t) in the circuit of Fig 18.44

(a) Let i(t) = sgn(t) A

(b) Let i(t) = 4[u(t) – u(t – 1)] A

Figure 18.44

For Prob 18.42

Trang 50

Chapter 18, Solution 42

By current division, ⋅ ( ) ω

ω +

j 2

2

Io(a) For i(t) = 5 sgn (t),

( )

) j 2 ( j

20 j

10 j 2

2 I

j

10 I

o = + ω ⋅ ω = ω + ω

ω

= ω

2 s

B s

A ) 2 s ( s

20

+ +

= +

=

( )

ω +

− ω

= ω

j 2

10 j

− ω

= ω + ω

j 2

1 j

1 4 ) j 2 ( j

e 1 8

I

ω +

+ ω

− ω +

− ω

j 2

e 4 j

e 4 j 2

4 j

Trang 51

⎯→

= ω

= ω

= ω

⎯→

j 1

5 I

e 5 i , j

50 10

x 20 j

1 C

j

1

mF

ω

= +

+

= ω

• ω +

) 25 1 s )(

1 s (

250 j

50 I j

50 40

= +

+ +

=

25 1 s

1 1 s

1 1000 25

1 s

B 1

s

A

Vo

V ) t ( u ) e e ( 1000 )

t (

vo = −1t − −1.25t

Trang 52

We transform the voltage source to a current source as shown in Fig (a) and then

combine the two parallel 2Ω resistors, as shown in Fig (b)

, 1

2

2 = Ω

2

V j 1

1

ω +

=

) j 1 ( 2

V j I j

=

( ) t 10 ( t 2 ) 10

10 j 2

ω +

− ω +

= ω +

j 1

5 j

1

5 j

1

e 1 5 V

) 2 t ( u e 5 ) t ( u e 5 ) t (

1 (

Trang 55

Chapter 18, Problem 46

Determine the Fourier transform of io(t) in the circuit of Fig 18.48

Figure 18.48

For Prob 18.46

Trang 56

Chapter 18, Solution 46

F 4

1

ω

= ω

4 j 4

1 j 1

2H jω2 )

t (

) t ( u

e− t

ω + j 1 1 The circuit in the frequency domain is shown below:

At node Vo, KCL gives

ω

= ω

− − +

− ω

+

2 j

V 4 j

V 3 2

V j

1

1

o o o

ω

= ω

− ω +

− ω

V 2 j V j 3 j V 2 j

1

2

ω

− ω +

ω + ω +

=

2 j j 2

3 j j 1

ω +

ω

− ω +

= ω

=

ω

2 j j 2 2 j

j 1

3 3 j 2 2

j

V I

2

o o

Io(ω) =

) 2 8 ( 6

4

3 j 2

3 2

2 2

ω

− ω + ω

ω

− ω +

Io( ω)

2

j2 ω

–j4/ ω+

+

Trang 57

1 I

ω +

=

ω + ω +

= ω +

ω

= ω

=

j 1

8 j 2

2 I

j

2 1 j

2 I

+

) 2 s )(

1 s

Trang 58

5 j C j 1

As an integrator,

4 0 10 x 20 x 10 x 20

j

V RC

=

j 2 j

2 4

0 1

=

=

j 2 j

2 125

0 mA 20

V

o

( ) ω πδ

− ω +

+ ω

j 2

125 0 j

125 0

π

− +

2

125 0 t u e 125 0 ) t sgn(

125 0 )

io(t) = 0 6250 25 u ( ) + 0 125 e2 tu ( ) mA

Trang 60

= 2

I 3

I j 3 j 1 2 2

ω +

ω + ω +

=

2 2

+

2 s 4 s

V 2 s

2 j

2 + ω + ω

− ω δ + + ω δ π + ω

( )

∫−∞∞

ω ω ω

π

2

1 )

t

(

o o

+ ω + ω

ω

− ω δ +

ω + +

ω + ω

ω + ω δ +

ω

=

2 4 j j

d 1 e

2 j 2 1 2

4 j j

d 1 e

2 j 2 1

2

t j 2

t j

2 4 j 1

e 2 j 2 1

2 4 j 1

e 2 j 2

+ +

+ + +

1 e 17

4 j 1 j 2 2

1 )

t

(

v

jt jt

o

− +

Trang 61

Chapter 18, Problem 50

Determine vo(t) in the transformer circuit of Fig 18.52

Figure 18.52

For Prob 18.50.

Trang 62

= ω

ω +

=

j

I j 1 2 5

0 j

I j 1

1Substituting this into (1),

I j 1 2

ω

ω +

=

2

2 I 2

3 4 j 4 j

2 2

5 1 4 j 4

j 2 I

ω

− ω +

ω

=

( )2 2

o

j 5 1 4 j 4

j 2 I

V

ω + ω +

8 j 3 8

j 3

4 V

ω +

ω +

ω

=

2 2

2 2

3

8 j

3 4

3 16

3

8 j

3 4

j 3

4 4

3

8 sin e

657 5 ) ( u t 3

8 cos e

Trang 63

3

e 2 4

e 2 e

Trang 64

2 0

2( t ) dt 1 F ( ) d f

2

=

2 3

1 ) 3 / ( tan 3

1 d 9

1 1

0

1

π π

= ω

π

= ω ω + π

0 t , et 2

t 2

t40

t4

0 4t

4

e 4

e 2 dt e dt e

Chapter 18, Problem 54

Given the signal f(t) = 4et

u(t) what is the total energy in f(t)?

t 2

2( t ) dt 16 e dt 8 e

Trang 65

= ω ω + π

= ω ω

0 1 4

4 0

2

) ( tan e 25 d 1

1 e

25 d ) ( F 1

= 12.5e4 = 682.5 J

or W1Ω = ∫−∞∞ = ∫0∞ − =

t 2 4

2( t ) dt 25 e e dt

Chapter 18, Problem 56

The voltage across a 1- Ω resistor is v(t) = te− 2t

u(t) V (a) What is the total energy

absorbed by the resistor? (b) What fraction of this energy absorbed is in the frequency band –2 ≤ ω ≤ 2?

1 5

0 tan 5 0 4 4

+ ω

ω π

Trang 66

4 d ) 1 (

1 2

4 d ) ( 2

1

0

1 2

π

= ω π

= ω ω + π

= ω ω π

1

π

= π

= ω π

Determine the following:

(a) the carrier frequency,

(b) the lower sideband frequency,

(c) the upper sideband frequency

Chapter 18, Solution 58

ωm = 200π = 2πfm which leads to fm = 100 Hz (a) ωc = πx104 = 2πfc which leads to fc = 104/2 = 5 kHz

(b) lsb = fc – fm = 5,000 – 100 = 4,900 Hz

(c) usb = fc + fm = 5,000 + 100 = 5,100 Hz

Trang 67

Chapter 18, Problem 59

For the linear system in Fig 18.54, when the input voltage is vi(t) = 2δ (t) V, the output

is v0(t) = 10e− 2t – 6e− 4tV Find the output when the input is vi(t) = 4et

− ω +

= ω +

− ω +

= ω

ω

=

ω

j 4

3 j

2

5 2

j 4

6 j

2 10 )

( V

) ( V )

(

H

io

ω

= +

+

− + +

=

ω +

− ω +

= ω ω

= ω

j s , ) 4 s )(

1 s (

12 )

2 s )(

1 s ( 20

j 1

4 j 4

3 j

2

5 )

( V ) ( H )

(

Using partial fraction,

ω +

+ ω +

− ω +

= +

+ +

+ +

+ +

= ω

j 4

4 j

2

20 j

1

16 4 s

D 1 s

C 2 s

B 1 s

A )

(

Vo

Thus,

( 16 e 20 e 4 e ) u ( t ) V )

t (

vo = −t − −2t + −4t

Trang 68

Chapter 18, Problem 60

A band-limited signal has the following Fourier series representation:

is(t) = 10 + 8 cos(2 π t + 30º) + 5 cos(4 π t – 150º)mA

If the signal is applied to the circuit in Fig 18.55, find v(t)

Figure 18.55

For Prob 18.60.

Ngày đăng: 13/09/2018, 13:31

TỪ KHÓA LIÊN QUAN