Find the Fourier transform of the waveform shown in Fig... Obtain the Fourier transforms of the signals shown in Fig... Determine the Fourier transforms of the signals in Fig... Obtain t
Trang 1f = δ + − δ + − δ − + δ −
2 j j j 2
e ) ( F
j ω ω = ω− ω − − ω + − ω = 2 cos 2 ω − 2 cos ω
F(ω) =
ω
ω
− ω
j
] cos 2
[cos 2
Trang 21 t 0 , ) t (
or ω = ∫1 − ω
0 t
j dt e t ) (
F
But ∫ = ( ax − 1 ) + c
a
e dx e
ax ax
=
0 2
j
) 1 t j ( j
e )
(
2 + ω − ω
Trang 31 ) t ( ' f , 2 t 2 , 2
1 ) t ( = − < < = − < <
t j t
) j ( 2
e dt e t 2
1 ) ( F
12 F(ω) = j2( 2 ω cos 2 ω − sin 2 ω )
ω
Trang 4Chapter 18, Problem 4
Find the Fourier transform of the waveform shown in Fig 18.29
Figure 18.29
For Prob 18.4
Trang 5Chapter 18, Solution 4
4 sin 4 cos 4
e j 2 e
2 4 e j 2 e 2 ) ( G ) j (
) 1 t ( 2 ) 1 t ( 2 ) t ( 4 ) 1 t ( 2 ) 1 t ( 2 g
jj
jj
2
+ ω ω
− ω
−
= ω ω
− δ′
−
− δ
− δ + + δ′
+ + δ
−ω
ω
) 1 sin (cos
4 ) (
ω
= ω
t
0
2 g’
–2 –1
–2 –1
2δ’(t+1)
–2δ(t–1)
1 –2δ(t+1)
–2δ’(t–1)
Trang 7− ω
= ω
−
−
= ω ω
δ′
−
− δ
− + δ
) t ( 2 ) 1 t ( ) 1 t ( ) t ( h
jj
h”(t)
0 1
–δ(t–1) δ(t+1)
t
1
–2δ(t) –1
h’(t)
0 1
Trang 8Find the Fourier transforms of both functions in Fig 18.31 on the following page
Trang 910δ(t)
0 1 2 -5
Take the Fourier transform of each term
(jω)2G(jω) = 10jω – 5jωe–jω – 5e–jω + 5e–j2ω which leads to
G(jω) = (–10jω + 5jωe–jω + 5e–jω – 5e–j2ω )/ω2
Chapter 18, Problem 7
Trang 10Find the Fourier transforms of the signals in Fig 18.32
2 ( )
Trang 11Obtain the Fourier transforms of the signals shown in Fig 18.33
j2
21tj1
0tj
21
tj1
0
tj
) 1 t j ( e
2 e
j
4 e
j
2
dt e ) t 2 4 ( dt e 2
)
(
F
− ω
− ω
−
− ω
−
+ ω
−
=
− +
=
ω
ω
−ω
−ω
−
ω
−ω
−ω
ω
− ω
− ω
+ ω
+ ω
=
j
4 j
2 e
j
2 2 ) ( F
(b) g(t) = 2[ u(t+2) – u(t-2) ] - [ u(t+1) – u(t-1) ]
ω
ω
− ω
ω
=
ω ) 4 sin 2 2 sin (
G
Chapter 18, Problem 9
Trang 12Determine the Fourier transforms of the signals in Fig 18.34
=
ω ) 2 sin 2 4 sin (
Y
(b) Z ( ) ( 2 t ) e dt 2 e ( j t 1 ) 2 2 e ( 1 j )
2
j2
101
tjt
ω
− ω
=
− ω
− ω
Trang 13Obtain the Fourier transforms of the signals shown in Fig 18.35
0 t , e e
t
t )
ω
−
− ω
1 0
t j t t
j t t
e ) t ( y ) ( Y
0
t j 1 ( 0 1
t j 1 (
) j 1 (
e j
1
e
ω +
−
+ ω
ω
− ω + ω
−
ω + ω
− ω +
j 1
sin j cos j
1
sin j cos e 1
+
−
Chapter 18, Problem 11
Trang 14Find the Fourier transform of the “sine-wave pulse” shown in Fig 18.36
t j t j t j t
j 2
1 dt e t sin )
e ( j 2 1
−
+ π
− ω
−
0
t ) ( j 2 0 t ) ( j
) ( j
e e
) ( j
1 j
2 1
= ⎜⎜ ⎝ ⎛ π − − ω + − π + ω ⎟⎟ ⎠ ⎞
ω
− ω
− j 2 1 e j 2
e 1 2 1
( π + π − ω)
ω
− π
2
) (
2 1
Chapter 18, Problem 12
Trang 15Find the Fourier transform of the following signals
j
ω ω
Trang 16Find the Fourier transform of the following signals:
(a) We know that F [cos at ] = π [ δ ( ω − a ) + δ ( ω + a )]
Using the time shifting property,
) a ( e ) a ( e
)]
a ( ) a ( [ e
)]
a 3 / t ( a
[cos − π = π −jωπ/ a δ ω − + δ ω + = π −jπ/3δ ω − + π jπ/3δ ω + F
(b) sin π ( t + 1 ) = sin π t cos π + cos π t sin π = − sin π t
g(t) = -u(t+1) sin (t+1)
Let x(t) = u(t)sin t, then 2 2
1
1 1 ) j (
1 )
( X
ω
−
= + ω
= ω Using the time shifting property,
1
e e
1
1 )
(
G
2
jj
)]
b ( Y ) b (
1 t j (
e j
e dt e ) t 1
j2
402
tj4
0
tjt
ω
− ω
− ω
=
− ω
− ω
−
− ω
Trang 17
Find the Fourier transforms of these functions:
(a) f(t) = e−t cos(3t + π )u(t)
(b) g(t) = sin π t[u(t + 1) – u(t – 1)]
(c) h(t) = e− 2tcos π tu(t – 1)
(d) p(t) = e− 2tsin 4tu(–t)
(e) q(t) = 4 sgn(t – 2) + 3 δ (t) – 2u(t – 2)
Chapter 18, Solution 14
Trang 18(a) ) cos( 3 t + π ) = cos 3 t cos π − sin 3 t sin π = cos 3 t ( − 1 ) − sin 3 t ( 0 ) = − cos( 3 t
) t ( u t 3 cos e ) t ( = − − tF(ω) = ( )
j 1
2 + ω +
ω +
−
(b)
[ u ( t 1 ) u ( t 1 ) ]
t cos )
− ω π
−
= ω ω
ω π
Alternatively, we compare this with Prob 17.7
π
= ω
=
2 2
e ) ( F G
j 22 sin2
π
− ω
ω π
ω π
Trang 19(c) t cos π ( t − 1 ) = cos π t cos π + sin π t sin π = cos π t ( − 1 ) + sin π t ( 0 ) = − cos π Let x ( t ) = e− 2 t − 1 )cos π ( t − 1 ) u ( t − 1 ) = − e2h ( t )
and y ( t ) = e− 2 tcos( π t ) u ( t )
2 2) j 2 (
j 2 )
( Y
π + ω +
ω +
= ω
) 1 t ( x ) t (
ω
−ω
=
ω ) X ( ) e j(
Y
jj 2
e j 2 ) ( X
π + ω +
ω +
=
) ( H e ) (
X ω = − 2 ω
) ( X e ) (
H ω = − − 2 ω
2 jj 2
e j 2
π + ω +
ω +
(d) Let x ( t ) = e− 2 tsin( − 4 t ) u ( − t ) = y ( − t )
) t ( x ) t (
p = − where ) y ( t ) = e2 tsin 4 t u ( t
4 j
2
j 2 )
( Y
+ ω +
ω +
= ω
j 2 )
( Y ) (
+ ω
−
ω
−
= ω
−
= ω
= ω
−
=
ω ) X ( ) (
p
2 j
2 +
− ω
− ω
j
1 ) ( 2 3 e
j
8 ) (
− + ω
= ω
Q(ω) = ej 2 3 2 ( ) e j 2
j
6 ω + − πδ ω − ωω
Chapter 18, Problem 15
Trang 20Find the Fourier transforms of the following functions:
) ( ) 0 ( F j
) ( G
ω δ π + ω
ω
=
) ( ) 1 ( 2 j
e
2 j
ω δ
− πδ + ω
= ω
1 ) ( F
2
j 3
−
Chapter 18, Problem 16
Trang 21* Determine the Fourier transforms of these functions:
ω
−
→
ω π
→
−
2 t
4
ω π
− 4
(b) e−at 2 2
a
a 2 ω +
e 4
Chapter 18, Problem 17
Trang 22Find the Fourier transforms of:
(a) cos 2tu(t) (b) sin 10tu(t)
Chapter 18, Solution 17
(a) Since H(ω) = F ( 0 ) [ F ( 0) ( F 0) ]
2
1 ) t ( t
where F(ω) = F [ ] ( ) ( ) , 2
j
1 t
ω + ω πδ
− ω πδ + + ω + + ω πδ
=
ω
2 j
1 2
2 j
1 2
2
1 H
− ω + + ω
−
− ω δ + + ω δ
π
=
2 2
2 2
2
j 2 2
2
4
j 2 2
ω
−
− ω δ + + ω δ π
(b) G(ω) = F [ 0 ] [ F ( 0) ( F 0) ]
2
j ) t ( t
where F(ω) = F [ ] ( ) ( )
ω + ω πδ
=
j
1 t
u
( ) ω = ⎢ ⎣ ⎡ πδ ( ω + ) ( + ω + ) − πδ ( ω − ) ( − j ω − 10 ) ⎥ ⎦ ⎤
1 10
10 j
1 10
2
j G
j 2
j 10 10
10 2
j
2 − ω
−
− ω δ
− + ω δ π
Chapter 18, Problem 18
Trang 23Given that F( ω ) = F[f(t)], prove the following results, using the definition of Fourier
Trang 24Find the Fourier transform of
f(t) = cos 2 π t[u(t) – u(t – 1)]
− π
0
t 2 j t 2 j t
j
( ) ω = ∫1[ − ( ω + π ) + − ( ω − π ) ]
0
t 2 j t 2
e 2
1 F
1 0
t 2 j t
2
2 j
1 e
2 j
1 2
−
+ π
+ ω
− +
π + ω
−
−
= − ω+ π − ω− π
2 j
1 e
2 j
1 e
+ π + ω
1 j
1 e 2
1 F
Chapter 18, Problem 20
Trang 25(a) Show that a periodic signal with exponential Fourier series
Trang 26t jn
n c
(b) T = 2 π 1
T
2
o = π = ω
jn
2
1 dt e t f T
1
( e 1 )
n 2
j e
jn
1 2
≠
= π
−, n even0
0 n , odd n , n j
=
0 n
2
1 dt 1 2
1 c
jnt
e n
j 2
1 )
− δω
odd
n 0 n n
n n
j 2
1
Chapter 18, Problem 21
Trang 27Show that
∫−∞∞
2sin
1 dt ) t (
ω π
1 a 2 dt ) 1 ( dt ) t ( f
22
aa22
or
a a 4
a 4 d a
a sin
e e ) t ( t
sin ) t
o
o o
− ω
− ω
e ) t ( j 2
= [ F ( o) ( F o) ]
j 2
1 ω − ω − ω + ω
Chapter 18, Problem 23
Trang 28If the Fourier transform of f(t) is
F( ω ) =
) 5 )(
/ j 5 3 / j 2
10 3
/ j 15 2 / j 2
10 2
1
+ ω + + ω
5 2
j 5 2 j 2
5
− ω +
− ω +
+ + ω + + ω +
(d) F [ ] ( ) ( ) ( + ω )( + ω )
ω
= ω ω
=
j 5 j 2
10 j F
j t ' f
t
dt t
( ) ω + π ( ) ( ) δ ω
ω
0 F j
F
10 x j
5 j 2 j
ω + ω + ω
=
= j ω ( 2 + j ω )( 5 + j ω ) + πδ ( ) ω
10
Trang 29Chapter 18, Solution 24
(a) X ( ) ( ) ω = F ω + F [3]
ω + ω
(b) y ( ) ( t = f t − 2 ) ( ) ω = e− ω F ( ) ω =
Y j 2 je j 2 ( e j − 1 )
ω
ω
− ω
−
(c) If h(t) = f '(t)
ω ω
= ω ω
3 x 10 2
3 F 2
3 x 4 ) ( G , t 3
5 f 10 t 3
2 f 4 t g
5 3
j 6 1 e
2 3
⋅
= j 4 ( e j 3 / 2 1 ) j 10 ( e j 3 / 5− 1 )
ω +
− ω
ω
− ω
−
Trang 301 (
Trang 311 +
⎯→
⎯
−
− +
1 ( u 2 ) 1 (
− + ω
=
ω
Trang 32Chapter 18, Problem 27
Find the inverse Fourier transforms of the following functions:
(a) F(ω ) =
) 10 (
100 +
2 (
10
+ +
ω
j j
j
(c) H(ω ) =
1300 40
1 (
) ( +
ω
ω δ
j j
Chapter 18, Solution 27
+ +
= +
10 s
B s
A 10 s s
100 s
F
10 10
100 B , 10 10
10 j
10 F
+ ω
− ω
= ω f(t) = 5 sgn ( ) t − 10 e−10 tu ( ) t
−
3 s
B s 2
A s 3 s 2
s 10 s
G
6 5
30 B
, 4 5
20
( )
3 j
6 2 j
4 G
+ ω
− + ω
−
=
= ω g(t) = 4 e2 tu ( ) − t − 6 e−3 tu ( ) t
(c) ( )
60 1300
40 j j
60
+ + ω
= +
ω + ω
= ω
= + ω ω +
ω ω
δ π
=
2
1 2
1 1 j j 2
d e 2
1 t y
t j
π
4 1
Trang 33Chapter 18, Problem 28
Find the inverse Fourier transforms of:
(a)
) 2
)(
5
(
) (
ω ω
(
) 2
)(
2
(
) 1 (
20
ω ω
5
ω
Trang 34ω πδ π
= ω ω
π
) j 2 )(
j 5 (
e ) ( 2
1 d e ) ( F 2
1 )
t
(
t j t
5
(
1 2
1
0.05
− ω
+
−
− π
= ω +
ω ω
+ ω δ π
=
) 1 2 j )(
2 j (
e 2
10 d e ) 1 j ( j
) 2 ( 10 2
1 )
t
(
t 2 j t
j
=
− π
2 j 1
e 2
ω
+ + π
= ω ω + ω +
− ω δ π
=
) j 3 )(
j 2 (
e 2
20 d
) 5 3 )(
j 2 (
e ) 1 ( 20 2
1 )
t
(
jt t
j
= + π
=
) j 5 5
− ) ejt1 (
) j 5 ( j
5 )
j 5 (
) ( 5 ) (
ω + ω
+ ω +
ω πδ
= ω
+
ω πδ π
5
1 2
5 d e j 5
) ( 5 2
1 ) t (
1
1 B , 1 A , 5 s
B s
A ) s 5 ( s
5 ) s (
+ +
= +
=
5 j
1 j
1 ) (
F2
+ ω
− ω
= ω
t 5 t
5
2
1 e
) t sgn(
2
1 ) t (
= +
= f ( t ) f ( t ) )
t ( 1 2 u ( ) − e−5 t
Trang 35= 4 cos 3 t 2
(
t
t 2 sin 8 2
1 ) t (
π
= g(t) =
t
t 2 sin 4
π (c) Since
cos(at) πδ ( ω + a ) + πδ ( ω − a )
Using the reversal property,
) 2 t ( ) 2 t ( 2
cos
2 π ω ↔ πδ + + πδ −
or F -1[ 6 cos 2 ω ] = 3 δ t + 2 ) + 3 δ t − 2 )
Trang 36= ω ω
= ω
⎯→
⎯
=
j a
1 ) ( X , j
2 ) ( Y )
t sgn(
a 2 2 j
) j a ( 2 ) ( X
) ( Y )
(
ω +
= ω
ω +
= ω
= ω ω
+
=
ω
j 2
1 ) ( Y , j 1
1 )
(
X
) t ( u e ) t ( ) t ( h j
2
1 1 j 2
j 1 )
(
ω +
−
= ω +
ω +
=
ω
(c) In this case, by definition, h ( t ) = y ( t ) = e−atsin bt u ( t )
Trang 37= ω ω
+
= ω
j a
1 ) ( H , ) j a (
1 )
(
Y
2
) t ( u e ) t ( x j
a
1 ) ( H
) ( Y ) (
ω +
= ω
ω
= ω
(b) By definition, x ( t ) = y ( t ) = u ( t + 1 ) − u ( t − 1 )
(c )
ω
= ω ω
+
= ω
j
2 ) ( H , ) j a (
1 )
( Y
) t ( u e 2
a ) t ( 2
1 ) t ( x )
j a ( 2
a 2
1 ) j a ( 2
j )
−
= ω +
ω
= ω
ω
=
ω
Trang 38Chapter 18, Problem 32
* Determine the functions corresponding to the following Fourier transforms:
(a) F1( ω ) =
1 +
2 1
) (
e j
+ ω
ω
−
e−( )t − 1u ( t − 1 ) and F ( ) − ω f(-t)
( )
1 j
e F
2
2 +
ω
−πe 2
If F2( ) ω = 2 e−ω, then
f2(t) = ( t 1 )
2
2 + π (d) By partial fractions
4 1 1
j 4 1 1
j 4 1 1
j 4 1 1
j 1 j
1
− ω
−
− ω
+ + ω
+ + ω
=
− ω + ω
= ω
Hence ( ) ( te e te e ) u ( ) t
4
1 t
ω +
ω δ π
= ω ω
π
=
2 j 1
e 2
1 d e F 2
1 t
Trang 39* An asterisk indicates a challenging problem
ω π
= ω Applying duality property,
t
t sin j 2 t X 2
1 t f
− π
−
=
− π
= f(t) = 2 2
t
t sin j 2 π
−
ω
− ω
− ω ω
=
− ω
j
e j
e e
e
j 2 j
2
1 1 t sgn 2
1 t
1 1 t u t
= u ( t − 1 ) ( − u t − 2 )
Trang 41t 2
1 –2 –1
20
0
g ‘(t)
t 2
Trang 42e e
3 / j 2
1 3
1 ) (
ω +
= ω
+ + ω +
=
− ω + + ω
=
ω
) 5 ( j 2
1 )
5 ( j 2
1 2
1 )]
5 ( F ) 5 ( F [
ω
= ω ω
= ω
j 2
j ) ( F j ) ( Z
) j 2 (
1 )
( F ) ( F ) ( H
ω +
= ω ω
= ω
(e)
2
1 )
j 2 (
) j 0 ( j ) ( F d
d j ) (
ω +
= ω +
−
= ω ω
= ω
Trang 43If the input signal to the circuit is vs(t) = t
e−4 u(t) V find the output signal Assume all
initial conditions are zero
Trang 44=
ω
j 2
2 j j
2
By current division,
( ) ( ) ( )
ω + + ω
ω
= ω +
ω +
ω +
ω
= ω
ω
=
ω
4 j 8 2 j
2 j j
2
2 j 4
j 2
2 j I
I H
s o
H(ω) =
ω +
ω
3 j 4 j
Trang 46j
1 dt e ) t 1 ( ) ( V
+ ω ω +
= ω
10 10
x j
10
) ( V
)
(
Trang 47v && = δ − δ − + δ −
2 j j
2V ( ω ) = 1 − 2 e−ω + eωω
= ω +
= ω
j
2 j 1 j
1 2 Z
( )
ω
⋅ ω
−
−
= ω
ω
2 j 1
j 1 e e 2 Z
V
2 j j
ω + ω
= 0 5 0 5 e j 2 e j
j 5 0 j 1
But
5 0 s
B s
A ) 5 0 s ( s
1
+ +
=
ω +
−
− +
ω
=
j 5 0
2 e
e 5 0 5 0 j
2 I
i(t) = sgn( t 2 ) sgn( t 1 ) e u ( ) e u t 2 ) 2 e u t 1 )
2
1 ) sgn(
Trang 48ω + ω
= + ω
− ω
=
− ω + ω + ω +
−
j 2
9 j 4 j
2
j 4 j V 4 2 j
0 2 j
V 2 V j 2
j 2
1 V
22
V(ω) =
) j 2 4 )(
j 2 (
) 2 j 5 4 ( j 2
ω
− ω +
ω + ω
2
+ V
0.5s 1/s
ω + j
2
−
Trang 49Chapter 18, Problem 42
Obtain the current io(t) in the circuit of Fig 18.44
(a) Let i(t) = sgn(t) A
(b) Let i(t) = 4[u(t) – u(t – 1)] A
Figure 18.44
For Prob 18.42
Trang 50Chapter 18, Solution 42
By current division, ⋅ ( ) ω
ω +
j 2
2
Io(a) For i(t) = 5 sgn (t),
( )
) j 2 ( j
20 j
10 j 2
2 I
j
10 I
o = + ω ⋅ ω = ω + ω
ω
= ω
2 s
B s
A ) 2 s ( s
20
+ +
= +
=
( )
ω +
− ω
= ω
j 2
10 j
− ω
= ω + ω
−
j 2
1 j
1 4 ) j 2 ( j
e 1 8
I
ω +
+ ω
− ω +
− ω
j 2
e 4 j
e 4 j 2
4 j
Trang 51⎯→
⎯
= ω
= ω
= ω
⎯→
j 1
5 I
e 5 i , j
50 10
x 20 j
1 C
j
1
mF
ω
= +
+
= ω
• ω +
) 25 1 s )(
1 s (
250 j
50 I j
50 40
= +
+ +
=
25 1 s
1 1 s
1 1000 25
1 s
B 1
s
A
Vo
V ) t ( u ) e e ( 1000 )
t (
vo = −1t − −1.25t
Trang 52We transform the voltage source to a current source as shown in Fig (a) and then
combine the two parallel 2Ω resistors, as shown in Fig (b)
, 1
2
2 = Ω
2
V j 1
1
ω +
=
) j 1 ( 2
V j I j
=
( ) t 10 ( t 2 ) 10
10 j 2
ω +
− ω +
= ω +
−
j 1
5 j
1
5 j
1
e 1 5 V
) 2 t ( u e 5 ) t ( u e 5 ) t (
1 (
Trang 55Chapter 18, Problem 46
Determine the Fourier transform of io(t) in the circuit of Fig 18.48
Figure 18.48
For Prob 18.46
Trang 56Chapter 18, Solution 46
F 4
1
ω
−
= ω
4 j 4
1 j 1
2H jω2 )
t (
) t ( u
e− t
ω + j 1 1 The circuit in the frequency domain is shown below:
At node Vo, KCL gives
ω
= ω
− − +
− ω
+
2 j
V 4 j
V 3 2
V j
1
1
o o o
ω
−
= ω
− ω +
− ω
V 2 j V j 3 j V 2 j
1
2
ω
− ω +
ω + ω +
=
2 j j 2
3 j j 1
ω +
ω
− ω +
= ω
=
ω
2 j j 2 2 j
j 1
3 3 j 2 2
j
V I
2
o o
Io(ω) =
) 2 8 ( 6
4
3 j 2
3 2
2 2
ω
− ω + ω
−
ω
− ω +
Io( ω)
2 Ω
j2 ω
–j4/ ω+
−
+
−
Trang 571 I
ω +
=
ω + ω +
= ω +
ω
= ω
=
j 1
8 j 2
2 I
j
2 1 j
2 I
+
) 2 s )(
1 s
Trang 585 j C j 1
As an integrator,
4 0 10 x 20 x 10 x 20
−
j
V RC
−
=
j 2 j
2 4
0 1
−
=
=
j 2 j
2 125
0 mA 20
V
o
( ) ω πδ
− ω +
+ ω
−
j 2
125 0 j
125 0
π
− +
−
2
125 0 t u e 125 0 ) t sgn(
125 0 )
io(t) = 0 625 − 0 25 u ( ) + 0 125 e−2 tu ( ) mA
Trang 60= 2
I 3
I j 3 j 1 2 2
ω +
ω + ω +
=
2 2
+
2 s 4 s
V 2 s
2 j
2 + ω + ω
− ω δ + + ω δ π + ω
( )
∫−∞∞
ω ω ω
π
2
1 )
t
(
o o
+ ω + ω
ω
− ω δ +
ω + +
ω + ω
ω + ω δ +
ω
=
2 4 j j
d 1 e
2 j 2 1 2
4 j j
d 1 e
2 j 2 1
2
t j 2
t j
2 4 j 1
e 2 j 2 1
2 4 j 1
e 2 j 2
+ +
−
+ + +
1 e 17
4 j 1 j 2 2
1 )
t
(
v
jt jt
o
−
− +
Trang 61Chapter 18, Problem 50
Determine vo(t) in the transformer circuit of Fig 18.52
Figure 18.52
For Prob 18.50.
Trang 62= ω
−
ω +
=
j
I j 1 2 5
0 j
I j 1
1Substituting this into (1),
I j 1 2
ω
ω +
−
=
2
2 I 2
3 4 j 4 j
2 2
5 1 4 j 4
j 2 I
ω
− ω +
ω
=
( )2 2
o
j 5 1 4 j 4
j 2 I
V
ω + ω +
8 j 3 8
j 3
4 V
ω +
ω +
ω
=
2 2
2 2
3
8 j
3 4
3 16
3
8 j
3 4
j 3
4 4
3
8 sin e
657 5 ) ( u t 3
8 cos e
Trang 633
e 2 4
e 2 e
Trang 642 0
2( t ) dt 1 F ( ) d f
2
=
2 3
1 ) 3 / ( tan 3
1 d 9
1 1
0
1
π π
= ω
π
= ω ω + π
0 t , et 2
t 2
t40
t4
0 4t
4
e 4
e 2 dt e dt e
Chapter 18, Problem 54
Given the signal f(t) = 4e−t
u(t) what is the total energy in f(t)?
t 2
2( t ) dt 16 e dt 8 e
Trang 65= ω ω + π
= ω ω
0 1 4
4 0
2
) ( tan e 25 d 1
1 e
25 d ) ( F 1
= 12.5e4 = 682.5 J
or W1Ω = ∫−∞∞ = ∫0∞ − =
t 2 4
2( t ) dt 25 e e dt
Chapter 18, Problem 56
The voltage across a 1- Ω resistor is v(t) = te− 2t
u(t) V (a) What is the total energy
absorbed by the resistor? (b) What fraction of this energy absorbed is in the frequency band –2 ≤ ω ≤ 2?
1 5
0 tan 5 0 4 4
+ ω
ω π
Trang 664 d ) 1 (
1 2
4 d ) ( 2
1
0
1 2
π
= ω π
= ω ω + π
= ω ω π
1
π
= π
= ω π
Determine the following:
(a) the carrier frequency,
(b) the lower sideband frequency,
(c) the upper sideband frequency
Chapter 18, Solution 58
ωm = 200π = 2πfm which leads to fm = 100 Hz (a) ωc = πx104 = 2πfc which leads to fc = 104/2 = 5 kHz
(b) lsb = fc – fm = 5,000 – 100 = 4,900 Hz
(c) usb = fc + fm = 5,000 + 100 = 5,100 Hz
Trang 67Chapter 18, Problem 59
For the linear system in Fig 18.54, when the input voltage is vi(t) = 2δ (t) V, the output
is v0(t) = 10e− 2t – 6e− 4tV Find the output when the input is vi(t) = 4e−t
− ω +
= ω +
− ω +
= ω
ω
=
ω
j 4
3 j
2
5 2
j 4
6 j
2 10 )
( V
) ( V )
(
H
io
ω
= +
+
− + +
=
ω +
− ω +
= ω ω
= ω
j s , ) 4 s )(
1 s (
12 )
2 s )(
1 s ( 20
j 1
4 j 4
3 j
2
5 )
( V ) ( H )
(
Using partial fraction,
ω +
+ ω +
− ω +
= +
+ +
+ +
+ +
= ω
j 4
4 j
2
20 j
1
16 4 s
D 1 s
C 2 s
B 1 s
A )
(
Vo
Thus,
( 16 e 20 e 4 e ) u ( t ) V )
t (
vo = −t − −2t + −4t
Trang 68Chapter 18, Problem 60
A band-limited signal has the following Fourier series representation:
is(t) = 10 + 8 cos(2 π t + 30º) + 5 cos(4 π t – 150º)mA
If the signal is applied to the circuit in Fig 18.55, find v(t)
Figure 18.55
For Prob 18.60.