The RCOLD command is used to specify the zero pressure density for the coldKelvin... specify temperature for 1/2 TS substitutionin TFDsuppress temperaturesfrom default grid combinationof
Trang 2warranty,expressor implied,or assumesanylegalliabilityor responsibilityforthe accuracy,mmpletenesa,
or usefuhreasof anyinformation,apparatus,product,or processdisclosed,or representsthat itausewotddnotinfringe@ately ownedrights Referencehereinto anyspecitlccommercialproduct,process,orserviceby tradename,rrademark,marrufacturer,or othenviae,doesnot necsarif y cmaatituteor implyMa
Trang 3LA-10244-M UC-32 and 34 Issued: September 1984
User% Manual for GRIZZLY
&—
~ - , - ,
Trang 4USER’S MANUALFOR GRIZZLY
by
ABSTRACT
runs on the Los Alamos CRAY-1 computers
incor-1-3
4-6
properties such as opacity and conductivity
Trang 5GRIZZLY allows the users to
produce tables;
density scaling, etc.;
Trang 6formatted files All displays of tables or thermodynamic functions are written
devel-opment
L,
up=
o
GRIZZLY
MASS GET DIR=/LTE GRIZ GRZDB
Trang 7The name of the input command file is specified by iname The default for
user to run interactively
Cname PI Pz P3 ““” /.
1
slash (/)
enamel PI P2 P3
Each new
—
Trang 8D EOS Evaluation
Trang 9Tables are generated on the compression and temperature grid existing when
execute EOSMX, hence i + NMIX + 1 < 7,— or NMIX < 6 - i.—
volume mixing rule
Trang 10v COLD CURVEMODELS
9,14
9
Trang 11a tabular nuclear model, then mnl may be set to TAB and mn2 to the nuclear table
P
SP
The command
or USUPKScommand
Trang 12MODMRS2i null mn2 /
MODMRS2
MODMRS3i mnl mn2 /
MODMRS4i mnl mn2 /
that solid zero-point lattice
param-are
thevibra-
Trang 13tions are included in the tables generated by these models All models may be
COWANi /
Trang 14TFDC i /
TFDTOT i /
Trang 15evaluated for each constituent atom of the mixture All tables are generated on
ABAR abar /
BREFbref/
CLJ clj /
CMATcmat /
Trang 16CVIR cvir /
Kelvin
DEBSHKC c /
DEBSHKKScoo/
Trang 17This command is used to specify the exponent used in the Lennard-Jones match
P
IGRUN igrun /
MODCmode /
MODNmodnl modn2 /
Trang 18MODEmode /
Trang 19The RCOLD command is used to specify the zero pressure density for the cold
Kelvin
TSTFD tstfd /
USEALL i /
USEZ i /
Trang 20alternativemay be used
with the temperature grid
Trang 21TSUP k tl t; L2 t; /
CGRI)ql r12 ““” /
spec-ified in ascending order
CLIN n t’ll rln /
TLIN n t-l tn /
CLIN and TLIN commands
added to the grid
CLINA n ql qn /
CLOGAn ql tln /
have logarithmic spacing
Trang 22USEC i /
USET i /
Trang 23controls the sparsing for nuclear models, and KCTFD controls sparsing for the
all compression sparsing factors
KTMIX k /
KTNUCk /
KTTFD k /
1
-lo
value to remain unchanged
1
remain unchanged
badThis
Trang 24The SUP command suppresses data on table il and creates the resultant
KRTAB k /
KTTAB k /
remain unchanged
C All three
Trang 25fractions are input The ij’s are table numbers for mixture component j, and the
‘j
further use
of mixture components
COLDMXi mc mnl mn2 /
are used
ELECMXi me /
MXi/
MXC i /
TFDCMXi /
TFDMXi /
Trang 26These commands calculate TFD cold curves and TFD thermal electronic tables,
The scaling
2“
SUBCLDi /
Trang 27This command subtracts the isotherm of lowest temperature of table i from all
parameters
PCTAB i r1 p1 rz P2 /
Trang 28MIX, SUP, and ALL DATA will provide a list of raw data used by the models (see
default data settings
XIV EOS DISPLAY
isochores, and isotherms, respectively
units
DUNITS run tun pun eun vun /
Trang 29multipliers, respectively All parameters correspond to conversion factors for
1 and r2
the display
RHOiitp/
Trang 30or set to TTY, the display is sent to the user’s terminal If idev is set to P,
CHGMchgm /
The parameter chgi specifies
perature
THLIN n tl tn /
commands
Trang 31TENT tentl tent2 /
respectively
meshes
and risob
TISBGRD tl t2 /
(HUG command)
Trang 32‘lscGm ‘1 ‘2 “ “ “ ‘
comand)
codes existing at the laboratory
Trang 33WSES id fn il tl i2 t2 ipe /
RTAB i fn kyl ky2 /
1
XVI EXAMPLES
5P
Trang 34contribution for the pressure, energy, and free energy, respectively The
ex-tracted from the HUGDATA20 file
18
Trang 35not enough grid points around ambient conditions to resolve the structure of theEOS.
shown in Fig 16-5-2
ACKNOWLEDGMENTS
forand
Trang 36A,
energies
Trang 37s=- kB fJ %# 2{f(r,p)log f(r,p) + [1 - f(r,p)]log[l-f(r,p)]] (A-5)
Trang 38The solution of this is the Fermi-Dirac distribution function
calculated
Trang 39APPENDIXBHIGH DENSITY MATCH
9
Trang 40The version of the TFD match in PANDAhad an additional term in Eq (B-3) In
Trang 41APPENDIXCMIXING SCHEMES
I
1
Trang 42solutions of Eq (C-l) In particular, this scheme does not work in regions of
Trang 43This method is fast because it is noniterative and does not encounter
volume at high densities
Trang 44APPENDIXDDENSITY SCALING
and T is the temperature
Trang 45specify compressionsadd compressionschange table point
hugoniot
compression
compression
copy table
78181812
181812
22231017
132613
13
Trang 46specify cohesive energy (kcal/mole)
modelcompute mixture electronicterminate
computecomputespecifymixingspecifyspecifycomputecomputecomputespecifycomputecomputespecifycomputecomputecomputecomputespecify
EOS for elementsEOS for mixtureaccuracy parameter
method forisentropeisobarisochoreisothermcold curve
compression
1313
1010262513
13131010
2245613
1314141026271121142728282919sparsing factor
Trang 47raw data
specifyspecifyspecifycomputecomputecomputecompute
nuclear model
mix cold curves for specifiedmixture
specify a mixtureprint table
14141588992222
152624
Trang 48specify reference density
P
P
212623162727
272616282929292329302320
20
20
20
231616
suppression string
suppression string
Trang 49temperatureslist tables temperatures
isentrope search
components
components
add temperatures
grid
grid
grid
21
20
2320
2628
7,1122
22
111118182727
27
2828
282829
2918181818
Trang 50specify temperature for 1/2 TS substitutionin TFD
suppress temperaturesfrom default grid
combinationof USEC, USET, and USEZ use compressionsfrom table
use temperaturefrom table use atomic number, weight and density from table
specify us-u table (cm/psec)
P specify us-u table (km/see)
P compute virial match write tables to SESAME file write table to data base file specify exchange parameter specify atomic number
24 16 16
16
18
16 19 19 16
17
17
11 30 3 17 17
Trang 53TABLE IX-2
o
0.1 1 3 10 20 100 600 6000 100000
DEFAULT TEMPERATURE GRID (eV) 0.0125 0.025692 0.25 0.5
Trang 54I 1.
F Dowell, “SESAME ’83: Repor on the Los Alamos Equation-of-State Library,v Los Alamos National L boratory report LALP-83-4 (February 1983).
I
B I Bemett, J D Johnson, G I Kerley, and G T Rood, ‘Recent Developments in the Sesame Eq ation-of-State Library,” LOS Alamos
1
Scientific Laboratory report LA- 130 (February 1978).
J Abdallah, Jr., G I Kerley, I Bemett, J D Johnson, R C Albers, and W F Huebner, “HYDSES: A Subroutine Package for Using Sesame in Hydrodynamic Codes,”
Scientific Laboratory report LA-8209
‘EOSPAC: A Subroutine Package for Accessing the Data Libra~y,H Los Alamos National Laboratory report LA-9728-M (August 1983).
I
J M Hyman and M M Klein, “EO MOD: A Subroutine Package for Calculating Equation of State and Opacities “ Los Alamos National Laboratory report LA-8502-M (October 1981).
1
M S Shaw and G K Straub, ‘HYDROX:
Hydrodynamics Code,” Los Alamo Nationa
(March 1981).
The T-4 code EOSCRAY was develop d at Los
A One-Dimensional Lagrangian Laboratory report LA-8642-M
Alamos by B I Bennett.
I
No formal documentationexists f r EOSCRAY.
G I Kerley, “User’s Manual fo PANDA: A Computer Code for Calculating Equations of State,w Los Alamo National Laboratory report LA-8833-M (November 1981).
GRIZZLY uses a version of CANDID developed byD A Liberman and modified
by J D Johnson The basic phys cs is discussed in Appendix A J
Joseph Abdallah, Jr., “MIXB:
I
BCON Controller for Generating and Maintaining Sesame Library Files of Mixture Data,” Los Alamos Scientific Laboratory report LA-8219-M (Apr”l 1980).
1
Trang 55B I Bennett, “A ComputationallyEfficient Expression for the Temperature Isotherm in Equations of State,M Los Alamos Scientific Labor- atory report LA-8616-MS (December 1980).
Zero-S L Thompson and H Zero-S Lawson, ‘Improvements the Chart-D Hydrodynamic Code III: Revised Analytic Equations of State,M Sandia National Laboratory report SC-RR-710714 (March 1972).
Radiation-G I Kerley, ‘Rational Function Method of Interpolation,”Los Alamos Scientific Laboratory report LA-6903-MS (August 1977).
S P Marsh, Ed., LASL Shock Hugoniot Data (Universityof California Press, Berkeley, 1980).
J D Johnson and S P Lyon, “SES2D User’s Manual,” Los Alamos National Laboratory report LA-9164-M (April 1982).
M S Hoyt, ‘User’s Manual for LASL Shock Hugoniot Data File,H Los Alamos Scientific Laboratory report LA-7887-M (July 1979).
K A Gschneider,Solid State Physics ~, 275 (1964).
R P Feynman, N Metropolis, and E Teller, Phys Rev 7&, 1561 (1949).
R D Cowan and J Ashkin, Phys Rev 105, 144 (1957).
Trang 56Figure 16-1-1 Sample GRIZZLY run to generate default aluminum
Figure 16-1-2 Total pressure for aluminum calculated in example 1.
The pressure is plotted versus mass density for various temperatures.
Trang 57,0 6
,0 ,4
Total internal energY
for ~lminum calculated in examP1e 1.
Trang 58a
6
Trang 61Figure 16-2-1 Sample GRIZZLY run to access EOS tables written in
example 1 and calculate the principal hugoniot.
par;icle velocity ( km/see )
Figure 16-2-2 Comparison of the calculated aluminum hugoniot (solid
line) of example 2 with experiment (Ref 20) (squares).
Trang 62FIL L 130NE
.-gure 16-3-1 Sample GRIZZLY run to calculate the silver EOS of example 3.
Trang 64,0 ,0 ,0 ,(
Trang 65Figure
1 ,0
Trang 6816Q I I I I I
140
$ 100 0
a) 80 5
-Cn
~
a 40 20
0
p ( g/cm3 )
Figure 16-3-12 Comparison of the calculated silver hugoniot (solid line)
of example 3 with experiment (Ref 18) (squares).Pressure
is plotted versus mass density.
Trang 69101 100 Id lo:~
,0-3 ,0”6 ,0-5 IO-* !0-3 lo”~ 10-1 100 10! lo~ 103 lo<
RHO (MG/M3)
Total internal energy for BeO calculated in example 4.
Trang 706WJ-KJ
,Wlu$
A-o w.m 8- Z.2-P
c., !6.03 0-5 s0.03 C-X.16*W S-2 *.Q4 r, , ww H-5.9a.m ,- I.16.C5 J-2 ?2 D5 g-3 @@5 L-5.130.03
Trang 72Figure
IW ,K, A-0,00.00
Trang 739.5
9.0 8.5 I
O.O 0.5 1.0 1.5 2.0 2.5 3.o
particle velocity ( Imhec )
Comparison of the calculatedBeO hugoniot (solid line)
of example 4 with experiment (Ref 18) (squares).
Trang 74Figure 16-5-1 Sample run of GRIZZLY to calculate mixture of iron and
molybdenum using various schemes at a temperatureof 1 eV.
Trang 751:1 1:11]1313[l@+00
Figure 16-5-2 Printed output generated in example 5.
Trang 76STfiRT T ~ El, ’,:l 1 Ij Ij Ij FF”
-
Figure 16-5-2.(continued)
Trang 77Figure 16-5-2.(continued)
Trang 78—— — — -——
Trang 79— -Figure 16-6-l,(continued).
Trang 80I-1ST 51JF ””
-1 ,=, L
1.Ij Ij Ij [1=- 1 Ij -1 1:11:1Ij [1=+ Ij [i
1 E’ -1 [1Ij 1:1[1=+1]Ij
“~” Et.Jr, , ”
EFJI, ””
STOP
GR I Z ,~T&=&A T I PIE 1 ~ 1 ::: 5ECDH~,~
i~I=.l_l= 1:1 :::z = ,.=:= 12:::5 I ”” D+t.l Et.fn R”y’= 1. E.4Z:
HLL DClt.4 E
Figure 16-6-1.(continued)
Trang 81Id I , , , , I , , , , I
density ( g/cma )
Figure C-1 Pressure as a function of density at a temperatureof 1 eV
for a one to one mixture of iron and molybdenum using the various mixing schemes The iron table used was SESAME 2140 and molybdenum table was SESAME 2980 The solid line is additive volume mix, the dashed line is partial pressure mix, and the boxes are ideal mix.
Trang 82-
, ,.,,: ,,,,
,,
!.
.
!
; - - , :, :
, ,
.’ .
Ptintcd in the United SIatcs of Amerka
Avaikbk from
National Tecbnk@ Information Scrvkc
US Department of Commerce s285 Port Roynl Road Springfield,VA 22161