1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Barycentric Finite Element Methods

56 179 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 3,67 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

 Motivation: Why Polygons in Computations? Weak and Variational Forms of Value Problems Boundary- Conforming Barycentric Finite Elements  Maximum-Entropy Basis Functions  Summary an

Trang 1

University of California, Davis

Barycentric Finite Element

Trang 2

Collaborators and Acknowledgements

• Research support of the NSF is acknowledged

Alireza Tabarraei (UNC, Charlotte)

Seyed Mousavi (University of Texas, Austin)

Kai Hormann (University of Lugano)

Trang 3

 Motivation: Why Polygons in Computations?

 Weak and Variational Forms of Value Problems

Boundary- Conforming Barycentric Finite Elements

 Maximum-Entropy Basis Functions

 Summary and Outlook

Outline

Trang 4

Motivation: Voronoi Tesellations in Mechanics

Trang 5

Motivation: Flexibility in Meshing & Fracture Modeling

Convex Mesh Nonconvex Mesh

Trang 6

Motivation: Transition Elements, Quadtree Meshes

Trang 7

Galerkin Finite Element Method (FEM)

3

1

2

x

FEM : Function-based method to solve

partial differential equations

Strong Form:

Variational Form:

steady-state heat conduction,

Trang 8

Galerkin FEM (Cont’d)

Trang 9

Galerkin FEM (Cont’d)

Discrete Weak Form and Linear System of Equations

Trang 10

Biharmonic Equation

Strong Form

Variational (Weak) Form

Trang 11

Elastostatic BVP: Strong Form

BCs

Trang 12

Elastostatic BVP: Weak Form/PVW

Kinematic relation

Constitutive relation

Approximation for trial function and admissible variations

basis function

Trang 13

,

Material moduli matrix

Elastostatic BVP: Discrete Weak Form

Trang 14

e

Trang 15

FEM (3-node) Polygonal

Three-Node FE versus Polygonal FE (Cont’d)

Trang 16

FEM (3-node) Polygonal

Three-Node FE versus Polygonal FE (Cont’d)

Trang 17

Three-Node FE versus Polygonal FE (Cont’d)

Trang 18

• Wachspress basis functions (Wachspress, 1975; Meyer et al., 2002; Malsch and Dasgupta, 2004)

• Mean value coordinates

Trang 19

• Non-negative

• Partition of unity

• Linear reproducing conditionsProperties of Barycentric Coordinates

Trang 20

Wachspress Basis Functions: Reference Elements

Canonical Elements

Trang 21

Isoparametric Transformation

(S and Tabarraei, IJNME, 2004)

Trang 22

Nonconvex Polygons

Mean Value Coordinates

(Floater, CAGD, 2003; Hormann and Floater, ACM TOG, 2006)

(Tabarraei and S, CMAME, 2008)

Trang 23

Issues in the Numerical Implementation

Mesh Generation and Numerical Integration

 Mesh generation with polygonal/polyhedral elements (Lectures to follow by Julian Rimoli and Glaucio

Trang 24

Mesh a Mesh b Mesh c

Trang 25

Principle of Maximum Entropy

discrete set of events

possibility of each event

uncertainty of each event

gives the least-biased probability distribution

(Shannon, Bell Sys Tech J., 1948; Jaynes, Phy Rev., 1957)

a

Trang 26

Entropy to Generalized Barycentric Coordinates

Trang 27

Entropy to Generalized Barycentric Coordinates

 for any , maximize

Trang 28

Entropy to Generalized Barycentric Coordinates

 for any , maximize

Trang 29

Entropy to Generalized Barycentric Coordinates

 for any , maximize

Trang 30

Entropy to Generalized Barycentric Coordinates

 for any , maximize

Trang 31

Max-Ent Basis Functions: Unit Square

!

x

which simplifies to

Trang 32

Max-Ent Basis Functions: Unit Square (Cont’d)

Since ,

we obtain and therefore

which are the same as bilinear finite element shape functions

Trang 33

Maximum-Entropy Meshfree Basis Functions

scattered nodes in

with coordinates

 for any , maximize

(Arroyo & Ortiz, IJNME, 2006; S & Wright, IJNME, 2007)

convex basis pos-def mass matrix convex hull property

no Runge phenomenon

functions

subject to

Trang 34

Non-Negative Max-Ent Coordinates

(Hormann and S, Comp Graph Forum, 2008)

Prior is based on edge weight functions

Trang 35

Quadratic Max-Ent Coordinates on Polygons

 Use notion of a prior in the modified entropy measure (signed basis functions) introduced by Bompadre et al., CMAME, 2012

 Adopt the linear constraints for quadratic precision

proposed by Rand et al., arXiv, 2011

 Use nodal priors (Hormann and S, CGF, 2008) based

on edge weights in the max-ent variational formulation

 Construction applies to convex and nonconvex planar polygons On each boundary facet, one-dimensional Bernstein bases (Farouki, CAGD, 2012) are obtained

Trang 36

Quadratic Max-Ent Coordinates on Polygons

subject to 6 linearly independent equality constraints: PU, linear reproducing conditions and

 for any

 planar polygon

with vertices

(S, unpublished, 2012)

Trang 37

Quadratic Precision Basis Functions: Square

uniform prior

Trang 38

Quadratic Precision Basis Functions: Square

Gaussian prior

Trang 39

Quadratic Precision Basis Functions: Square

edge prior

Trang 40

Quadratic Precision Basis Functions: Square

edge prior

Trang 41

Quadratic Precision Basis Functions: Pentagon

edge prior

Trang 42

Quadratic Precision Basis Functions: Pentagon

edge prior

Trang 43

Quadratic Precision Basis Functions: Pentagon

edge prior

Trang 44

Quadratic Precision Basis Functions: Nonconvex

edge prior

Trang 45

Quadratic Precision Basis Functions: Nonconvex

edge prior

Trang 46

Quadratic Precision Basis Functions: Nonconvex

edge prior

Trang 47

Quadratic Precision Basis Functions: Nonconvex

edge prior

Trang 48

Quadratic Precision Basis Functions: Nonconvex

edge prior

Trang 49

Quadratic Precision Basis Functions: Nonconvex

edge prior

Trang 50

Quadratic Precision Basis Functions: L-Shaped

edge prior

Trang 51

Quadratic Precision Basis Functions: L-Shaped

edge prior

Trang 52

Quadratic Precision Basis Functions: L-Shaped

edge prior

Trang 53

Quadratic Precision Basis Functions: L-Shaped

edge prior

Trang 54

Quadratic Precision Basis Functions: L-Shaped

edge prior

Trang 55

Quadratic Precision Basis Functions: L-Shaped

Approximation error for an arbitrary bivariate polynomial

Trang 56

 Introduced variational/weak forms for value problems, and presented the discrete

equations for standard and polygonal FE

 Discussed construction of basis functions on

polygonal meshes and implementation of polygonal finite elements

planar polygons using relative entropy Initial results for basis functions with quadratic precision on

convex and nonconvex polygons were presented

Ngày đăng: 28/12/2017, 11:53

TỪ KHÓA LIÊN QUAN