Clair, Inverse Heat Conduction, Ill-Posed Problems, Wiley–Interscience, New York, 1985.. Carasso, Logarithmic convexity and “slow evolution” constraint in ill-posed initial value problem
Trang 1Contents lists available at ScienceDirect Journal of Mathematical Analysis and Applications
www.elsevier.com/locate/jmaa
On a backward parabolic problem with local Lipschitz source
Nguyen Huy Tuana,b, ∗, Dang Duc Tronga
a
Faculty of Mathematics and Computer Science, University of Science, Vietnam National University,
227 Nguyen Van Cu, Dist 5, HoChiMinh City, Viet Nam
b Institute for Computational Science and Technology at Ho Chi Minh City (ICST),
Quang Trung Software City, Ho Chi Minh City, Viet Nam
a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 October 2012
Available online 20 January 2014
Submitted by Goong Chen
Keywords:
Nonlinear parabolic problem
Quasi-reversibility method
Backward problem
Ill-posed problem
Contraction principle
We consider the regularization of the backward in time problem for a nonlinear
parabolic equation in the form u t +Au(t) = f (u(t), t), u(1) = ϕ, where A is a positive self-adjoint unbounded operator and f is a local Lipschitz function As known, it
is ill-posed and occurs in applied mathematics, e.g in neurophysiological modeling
of large nerve cell systems with action potential f in mathematical biology A new
version of quasi-reversibility method is described We show that the regularized
problem (with a regularization parameter β > 0) is well-posed and that its solution
U β (t) converges on [0, 1] to the exact solution u(t) as β → 0+ These results extend some earlier works on the nonlinear backward problem.
© 2014 Elsevier Inc All rights reserved.
1 Introduction
u(t), t
where the function f is defined later and the operator A is self-adjoint on a dense space D(A) of H
f (u(t), t) = u u2
L2(0,l) then a concrete version of problem(1)is given as
⎧
⎪
⎪
u t − Δu = uu2
L2(0,l) , (x, t) ∈ (0, l) × (0, 1), u(0, t) = u(l, t) = 0, t ∈ (0, 1),
(2)
* Corresponding author.
E-mail address:tuanhuy_bs@yahoo.com (N.H Tuan).
0022-247X/$ – see front matter © 2014 Elsevier Inc All rights reserved.
Trang 2The first equality in problem(2) is a semilinear heat equation with cubic-type nonlinearity and has many applications in computational neurosciences It occurs in neurophysiological modeling of large nerve cell
u(0) In practice, u(1) is known only approximately by ϕ ∈ H with u(1) − ϕ β, where the constant β is
f : H × R → H is a global Lipschitz function with respect to the first variable u, i.e there exists a positive
with the backward parabolic equations included the local Lipschitz source f
Lipschitz function f The techniques and methods in previous papers on global Lipschitz function cannot
establish the following approximation problem
v β (t), t
{λ k } of A; i.e Aφ k = λ k φ k Without loss of generality, we shall assume that
0 < λ1< λ2< λ3< · · · , lim
k→∞ λ k =∞.
k=1 v, φ k φ k, we define
∞
k=1
βλ k + e −λ k
v, φ k φ k ,
∞
βλ k + e −λ kt −s
, 1
v, φ k φ k
Trang 3Then, problem(5)can be rewritten as the following integral equation
1
t
v β (s), s
This paper is organized as follows In the next section we outline our main results Its proofs will be given
2 The main results
f (v1, t) − f(v2, t) K p v1− v2,
f (v1, t) − f(v2, t), v1− v2
f (v1, t) − f(v2, t), v1− v2 f(v1, t) − f(v2, t) v1− v2
Sof(v1, t) − f(v2, t), v1− v2 −Kv1− v22 This means that (H2) is true
have
f (u) − f(v) = u u2− vv2
= u 2(u − v) + vu2− v2
u2+vu + v2
u − v.
ϕ < p, we can choose K p = 3p2 It follows that condition (H1) holds We verify (H2)
Trang 4g(u, v) =
f (u) − f(v), u − v=
u u2− vv2, u − v
(u − v)u2+ v
u2− v2
, u − v
=u − v2u2+
v
u2− v2
, u − v
and
g(u, v) =
f (u) − f(v), u − v=
u u2− vv2, u − v
u
u2− v2
+v2(u − v), u − v
=u − v2v2+
u2− v2
, u − v.
Adding two equalities, we get
u2+v2
u2− v2
, u − v
=u − v2
u2+v2
u2− v2
u + v, u − v
=u − v2
u2+v2
u2− v22
0.
Consequently, we have
g(u, v)u2+v2
Now we state main results of our paper Its proofs will be given in the next section
that (H1), (H2), (H3) hold Then the problem
v β (t), t
has uniquely a solution U β ∈ C1([0, 1]; H).
u(t) = ∞
k=1 u(t), φ k φ k such that
E2= 1
0
∞
k=1
λ2k e 2λ ku(s), φ k2
ds < ∞.
Then
U β (t) − u(t) M β t ln e
β
where M = 2e (2L+1)(1−t) E + e L(1 −t) .
Trang 5Remark 1.
between the exact solution and the approximation solution has the form
β
First, we shall prove some inequalities which will be used in the main part of our proof
also have
βx + e −x
βx + e −x
βx + e −x
= 0, x > x β Moreover, for x > 0, we have
βx + e −x
β
,
max
1
βx + e −x , 1
β
.
β , + ∞) Since m(0) = 0, m(ln(1
βx + e −x
Consider the function
βx + e −x
, ∀x ∈ (0, x β ),
Trang 6for 0 < β < 1 Computing the derivative of g(x), we get
βx + e −x .
g(x) g ln1
β
β
.
And, we have
max
1
βx + e −x , 1
= eln+(βx+e−x1 )
β
Lemma 4 For any 0 < β < 1, we have
A β ln β −1 lne
β
.
A β v 2=
∞
k=1
βλ k + e −λ k
2 v, φ k 2
β −1 lne
β
k=1
v, φ k 2
β −1 lne
β
v2.
β
So, if 0 s − t h 1 then
G β (t, s)(v) 2
=
∞
k=1
βλ k + e −λ k2t −2s
, 1 v,φ k 2
β
v2,
Trang 7Lemma 6 Suppose v β ∈ C([0, 1]; H) is the unique solution of the integral equation (6) Then v β ∈
∞
k=1
βλ k + e −λ kt−1
, 1
ϕ, φ k φ k
−∞ k=1
t
βλ k + e −λ kt−s
, 1
f
v β (s), s
, φ k
ds
φ k
We get by direct computation
d
∞
k=1
ln+
βλ k + e −λ k
× maxβλ k + e −λ kt−1
, 1
ϕ, φ k φ k
−
∞
k=1
t
ln+
βλ k + e −λ k
βλ k + e −λ kt−s
, 1
f
v β (s), s
, φ k
ds
φ k
+
∞
k=1
f
v β (t), t
, φ k
φ k
=
∞
k=1
ln+
βλ k + e −λ k
v β (t), φ k
φ k + f
v β (t), t
v β (t), t
.
k=1 ϕ, φ k φ k = ϕ Hence, v β is the solution of problem(5) 2
KM P , we put
N =
M 2 − KM1 − P
where [x] is the integer part of the real number x and K M is the Lipschitz constant in (H1) with respect
to M For ϕ i ∈ H, ϕ i P , we define
T i= 1− ih, i = 0, 1, , N,
L i=
v ∈ C[T i+1 , T i ]; H
, v(T i ) = ϕ i , sup
T i+1 tT i
v(t) M,
J i v = G β (t, T i )ϕ i −
T i
t
v(s), s
ds.
Then the operator J i has a unique fixed point on L i
J i v(t) G β (t, T i) ϕ i +
T i
G β (t, s) f
v(s), s ds.
Trang 8FromLemma 5, one has for Ti − h t T i
J i v(t) β t−T i
ϕ i +
T i
t
f
v(s), s ds.
f
ϕ i + MK M h
From (13), we have N 2β −1 K
1
N M 2 − 1 KM −P
M K M
− 1
KM − P
2KM1
β −β2 e1
J i v1(t) − J i v2(t) T i
t
G β (t, s) f
v1(s), s
T i
t
β −h K M v1(s) − v2(s) ds
T i+1 tT i
v1(t) − v2(t)
−h K
T i+1 tT i
v1(t) − v2(t)
2 T i+1suptT i v1(t) − v2(t)
2T i+1suptT i
v1(t) − v2(t) .
Trang 9Lemma 8 Assume that f satisfies (H2), (H3) Let 0 τ 1 and let u β ∈ C1([τ, 1]; H) satisfy
u β (t), t
, τ < t < 1,
Then for τ t 1
Proof One has
1 2
d
dt u β 2+A β u β , u β =f
u β (t), t
, u β
It follows that
1
2 u β(1) 2
+ 1
t
ds −1
2 u β (t) 2
−L
1
t
u β (s) 2
ds.
So we have
1
2 u β (t) 2
1
t
+ L u β (s) 2
ds.
It follows that
u β (t) 2
A β + L
1
t
u β (s) 2
ds.
Gronwall’s inequality gives
u β (t) 2
Proof of Theorem 1 We shall prove by induction that the equation
v(t), t
(19)
u
0(t) = A β u0(t) + f
Trang 10for T k t 1 Put ϕ k = u(t k) From Lemma 7, we can find uk ∈ C([T k+1 , T k ]; H) such that J k u k = u k.
then
β
Here we recall that the constant L is in (H2).
Proof For a > 0, we put
u β (t) − v β (t)
.
By direct computation, we get
d
f
u β (t), t
.
It follows that
e a(t−1)
f
u β (t), t
− fv β (t), t
, w β (t)
.
e a(t−1)
f
u β (t), t
− fv β (t), t
, w β (t)
f
u β (t), t
− fv β (t), t
, u β (t) − v β (t)
FromLemma 4, we have
β
β (t) 2
,
which gives
β
β (t) 2
.
It follows that
1 2
d
dt w β (t) 2
a w β (t) 2
− ln β −1 lne
β
β (t) 2
.
Then, we get
w β(1) 2
− w β (t) 2
2
1
a − L − ln β −1 lne
β
β (s) 2
ds.
Trang 11We choose a = L + ln(β −1(ln e
w β (t) 2
w β(1) 2
=ϕ − ω2.
Hence, we get
u β (t) − v β (t) e a(1 −t) ϕ − ω = e L(1 −t) β t −1 lne
β
u(t) − v β (t) e (2L+1)2 (1−t) β t ln e
β
where we recall
E =
0
∞
k=1
λ2
k e 2λ ku(s), φ k2
ds.
⎧
⎨
⎩
d
v β (t), t
,
and
⎧
⎨
⎩
d
dt u(t) + A β u(t) = (A β − A)u(t) + fu(t), t
, u(1) = ϕ.
For any b > 0, let
v β (t) − u(t).
Then by direct calculation
d
b(t −1)
v β (t) − u(t)+ e b(t −1)
v β (t) − u (t)
v β (t), t
+ A β u(t) − fu(t), t
− e b(t −1) (A
β − A)u(t)
f
v β (t), t
− fu(t), t
z β (t) + A β z β (t) − bz β (t), z β (t)
e b(t −1)
f
v β (t), t
− fu(t), t
, z β (t)
− e b(t−1)
(A β − A)u(t), z β (t)
Trang 12This means that
d
dt z β (t) 2
+ 2b z β (t) 2
e b(t −1)
f
v β (t), t
− fu(t), t
, z β (t)
− 2e b(t−1)
(A β − A)u(t), z β (t)
.
e b(t −1)
f
v β (t), t
− fu(t), t
, z β (t)
and
β
β (t) 2
.
d
dt z β (s) 2
+ 2e b(s−1)
(A β − A)u(s), z β (s)
2b z β (s) 2
− 2L z β (s) 2
− 2 ln β −1 lne
β
.
z β(1) 2
− z β (t) 2
+ 1
t
2e b(s−1)
(A β − A)u(s), z β (s)
1
t
z β (s) 2
ds.
This can be rewritten as
z β (t) 2
2L
1
t
z β (s) 2
ds +
1
t
2e b(s−1)
(A β − A)u(s), z β (s)
ds.
1
t
2e b(s−1)
(A β − A)u(s), z β (s)
ds
1
t
e 2b(s −1) (A β − A)u(s) 2
ds +
1
t
z β (s) 2
ds
1
t
(A β − A)u(s) 2
ds +
1
t
z β (s) 2
k=1 u(s), φ k φ k, it follows that 1
t
(A β − A)u(s) 2
ds =
1
t
∞
k=1
βλ k + e −λ k
u(s), φ k2
ds
= 1
λ <x
ln2
1 + βλ k e λ ku(s), φ k2
ds +
1
λ x
λ2ku(s), φ k2
Trang 13Here the positive number x β is defined inLemma 3 We have
1
t
λ k <x β
ln2
1 + βλ k e λ ku(s), φ k2
ds
1
t
∞
k=1
β2λ2k e 2λ ku(s), φ k2
ds
1
0
∞
k=1
λ2k e 2λ ku(s), φ k2
ds
1
t
λ k x β
λ2ku(s), φ k2
ds =
1
t
λ k x β
e −2λ k λ2k e 2λ ku(s), φ k2
ds
1
t
λ k x β
λ2k e 2λ ku(s), φ k2
ds
1
0
∞
k=1
λ2k e 2λ ku(s), φ k2
From (24),(25), (26)and(27), we obtain
e 2b(t −1) v β (t) − u(t) 2
(2L + 1)
1
t
e 2b(s −1) v β (s) − u(s) 2
ds + 2β2E2.
It implies that
e 2bt v β (t) − u(t) 2
(2L + 1)
1
t
e 2bs v β (s) − u(s) 2
ds + β2e 2b E2
= (2L + 1)
1
t
e 2bs v β (s) − u(s) 2
ds + E2 lne
β
e 2bt v β (t) − u(t) 2
2e (2L+1)(1 −t) lne
β
E2.
It can be rewritten as
v β (t) − u(t) 2
2e (2L+1)(1 −t) β 2t lne
β
E2.
Trang 14v β (t) − u(t) 2e (2L+1)2 (1−t) β t lne
β
E.
U β (t) − u(t) U β (t) − v β (t) + v β (t) − u(t)
e L(1−t) β t−1 lne
β
ϕ − ϕ β + 2e (2L+1)
2 (1−t) β t lne
β
E
β
2e (2L+1)2 (1−t) E + e L(1−t)
,
Acknowledgments
This work is supported by Vietnam National University HoChiMinh City (VNU-HCM) under Grant
No B2014-18-01
The authors would like to thank the anonymous referees for their valuable suggestions and comments leading to the improvement of our manuscript
References
[1] S Agmon, L Nirenberg, Properties of solutions of ordinary differential equations in Banach spaces, Comm Pure Appl Math 16 (1963) 121–239.
[2] K.A Ames, R.J Hughes, Structural stability for ill-posed problems in Banach space, Semigroup Forum 70 (1) (2005) 127–145.
[3] J Bear, Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.
[4] J.V Beck, B Blackwell, St.C.R Clair, Inverse Heat Conduction, Ill-Posed Problems, Wiley–Interscience, New York, 1985.
[5] Beth M Campbell Hetrick, Rhonda J Hughes, Continuous dependence on modeling for nonlinear ill-posed problems,
J Math Anal Appl 349 (2009) 420–435.
[6] A Carasso, Logarithmic convexity and “slow evolution” constraint in ill-posed initial value problems, SIAM J Math Anal 30 (1999) 479–496.
[7] G.W Clark, S.F Oppenheimer, Quasireversibility methods for non-well posed problems, Electron J Differential Equations
1994 (8) (1994) 1–9.
[8] M Denche, K Bessila, A modified quasi-boundary value method for ill-posed problems, J Math Anal Appl 301 (2005) 419–426.
[9] Y Huang, Q Zheng, Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups,
J Differential Equations 203 (1) (2004) 38–54.
[10] B.T Johansson, D Lesnic, T Reeve, A comparative study on applying the method of fundamental solutions to the backward heat conduction problem, Math Comput Modelling 54 (1–2) (2011) 403–416.
[11] J Lee, D Sheen, A parallel method for backward parabolic problems based on the Laplace transformation, SIAM J Numer Anal 44 (4) (2006) 1466–1486.
[12] J Lee, D Sheen, F John’s stability conditions versus A Carasso’s SECB constraint for backward parabolic problems, Inverse Problems 25 (5) (2009) 055001.
[13] K Miller, Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems, in: Symposium
on Non-Well Posed Problems and Logarithmic Convexity, in: Lecture Notes in Math., vol 316, Springer-Verlag, Berlin,
1973, pp 161–176.
Trang 15[14] P.T Nam, An approximate solution for nonlinear backward parabolic equations, J Math Anal Appl 367 (2) (2010) 337–349.
[15] L.E Payne, Improperly Posed Problems in Partial Differential Equations, SIAM, Philadelphia, PA, 1975.
[16] M Renardy, W.J Hursa, J.A Nohel, Mathematical Problems in Viscoelasticity, Wiley, New York, 1987.
[17]H Schurz, Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in R1 , in: Eighth Mississippi State – UAB Conference on Differential Equations and Computational Simulations, Electron J Differ Equ Conf 19 (2010) 221–233.
[18] R.E Showalter, The final value problem for evolution equations, J Math Anal Appl 47 (1974) 563–572.
[19] D.D Trong, P.H Quan, T.V Khanh, N.H Tuan, A nonlinear case of the 1-D backward heat problem: Regularization and error estimate, Z Anal Anwend 26 (2) (2007) 231–245.
[20] D.D Trong, N.H Tuan, Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems, Electron J Differential Equations 84 (2008) 1–12.
[21] N.H Tuan, D.D Trong, A nonlinear parabolic equation backward in time: regularization with new error estimates, Non-linear Anal 73 (6) (2010) 1842–1852.
... class="text_page_counter">Trang 15[14] P.T Nam, An approximate solution for nonlinear backward parabolic equations, J Math Anal Appl 367... nonlinear ill-posed problems, Electron J Differential Equations 84 (2008) 1–12.
[21] N.H Tuan, D.D Trong, A nonlinear parabolic equation backward in time: regularization with. .. transformation, SIAM J Numer Anal 44 (4) (2006) 1466–1486.
[12] J Lee, D Sheen, F John’s stability conditions versus A Carasso’s SECB constraint for backward parabolic problems,