1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Amorphous isradipine nanosuspension by the sonoprecipitation method

5 70 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 1,05 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Drug nanocrystals: a 240 state of the art formulation strategy for preparing the poorly water-solubleQ7 241 drugs.. Controlling particle size of a poorly water-soluble drug 245 using ult

Trang 1

1 Pharmaceutical nanotechnology

4 Q1 Thao Truong-Dinh Tran * , Phuong Ha-Lien Tran * , Minh Ngoc Uyen Nguyen,

5 Khanh Thi My Tran, Minh Nguyet Pham, Phuc Cao Tran, Toi Van Vo

6 PharmaceuticalEngineeringLaboratory,BiomedicalEngineeringDepartment,InternationalUniversity,VietnamNationalUniversity,HoChiMinhCity,

7 VietNam

A R T I C L E I N F O

Article history:

Received 31 May 2014

Received in revised form 28 July 2014

Accepted 14 August 2014

Available online xxx

Keywords:

Nanosuspension

Sonoprecipitation method

Crystallinity

Dissolution enhancement

A B S T R A C T

The aimsof this studyare to increaseand explainthemechanismof dissolutionenhancement of isradipineusingthesonoprecipitationmethodforstablenanosuspensions.Therehavebeenstillfewof published researchesonformulationofisradipine using nanoparticleengineering.Nanosuspension systemswereprepareduponvariousfactorsincludingamplitudeandthetimelengthofultrasonication ThedissolutiontestwasperformedaccordingtotheUSPpaddlemethodinintestinalfluid(pH6.8).The crystallinestructureofdrug,themolecularinteraction,morphologyandsizeofnanosuspensionwere also investigatedto determine themechanism of dissolutionenhancement The sonoprecipitation method withuseofHPMC6 showeditspotential inenhancementofthedrugrelease rate.Stable nanosuspensionwassignificantlydependedonamplitudeandtimeofultrasonicationsincethesefactors affectedonthesizeofnanoparticles.Thesynergisticeffectsofreductionofdrugcrystallinityandparticle sizecouldincreasethedissolutionrateofisradipinebyprovidingastablenanosuspension.Thiswork maycontributetoanewstrategyforimprovementdissolutionrateofisradipine

ã2014PublishedbyElsevierB.V

11 Agrawal,2011).Therefore,oneofthemajorcurrentchallengesof

18 Liuetal.,2012;Miaoetal.,2011;MoorthiandKathiresan,2013;

19 Zhengetal.,2010)becauseultrasoundhasbeenprovedtobean

26

27

Cohen,1997;Leroueil-LeVergeretal.,1998)andmaybedegraded

28

29

30

31

32

and Tran, 2013; Tran et al., 2010) Recently, Park et al has

33

34

35

36

37

(Leroueil-LeVergeretal.,1998).Theaimofthosenanoparticles

38

39

40

41

42

43

44

45

transmis-46

47

48

49

* Corresponding authors Tel.: +84 8 37244270x3328; fax: +84 8 37244271.

E-mail addresses: ttdthao@hcmiu.edu.vn (T.T.-D Tran),

thlphuong@hcmiu.edu.vn (P.H.-L Tran).

http://dx.doi.org/10.1016/j.ijpharm.2014.08.017

0378-5173/ã 2014 Published by Elsevier B.V.

Trang 2

50 2.Materialsandmethods

95

96

97

98

99

100

101

102

103

104

microscopy

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

Table 1

Formulation of IS suspensions.

Formulation IS

(mg) HPMC

6 (mg) HPMC 4000 (mg)

PEO N-60K (mg)

Sonication amplitude (level)

Sonication time (min)

Time [min]

0 20 40 60 80 100 120

F3 (PE O) F1 (HPMC 6) F2 (HPMC 4000) pure IS

Fig 1 Effect of polymer types (PEO, HPMC 6 or HPMC 4000) on dissolution rate of IS

at pH 6.8.

Trang 3

133

formulations

134

135

136

137

138

139

140

141

142

143

144

145

Time [min]

0

20

40

60

80

100

120

F4 (20 m g HPMC 6) F5 (10 m g HPMC 6) F6 (5 mg HPMC 6)

Fig 2 Effect of HPMC 6 concentrations on dissolution rate of IS at pH 6.8.

Time [min]

0

20

40

60

80

100

120

F7 (amplitude 2) F6 (amplitude 5)

Fig 3 Effect of ultrasonication amplitudes on dissolution rate of IS at pH 6.8.

Timne [min]

0

20

40

60

80

100

120

F8 (4 mins) F7 (5 mins)

Fig 4 Effect of ultrasonication time on dissolution rate of IS at pH 6.8.

Fig 5 Precipitation observation of formulation F6, F7, F8 at room temperature until

7 h.

Trang 4

146 intensityofsonicwavesisdirectlyproportionaltotheamplitudeof

178

179

180

181

182

183

184

185

dissolu-186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

IS (Hu et al., 2003; Tran et al., 2010) These results clearly

206

207

208

209

2009;Vasconcelosetal.,2007)

210

211

Fig 6 SEM image of pure IS (A) and TEM images of particles in formulations (B) F7; (C) F6.

Trang 5

212 drugmoleculeandHPMC6thatmayaffectthedissolutionrateof

229

230

231

ampli-232

233

234

235

Acknowledgement

236

237

238

References

239 Che, E., Zheng, X., Sun, C., Chang, D., Jiang, T., Wang, S., 2012 Drug nanocrystals: a

240 state of the art formulation strategy for preparing the poorly water-solubleQ7

241 drugs AJPS 7, 85–95.

242 Chrysant, S.G., Cohen, M., 1997 Long-term antihypertensive effects with chronic

243 administration of isradipine controlled release Curr Ther Res 58, 1–9.

244 Dalvi, S.V., Dave, R.N., 2009 Controlling particle size of a poorly water-soluble drug

245 using ultrasound and stabilizers in antisolvent precipitation Ind Eng Chem.

246 Res 48, 7581–7593.

247 Dalvi, S.V., Dave, R.N., 2010 Analysis of nucleation kinetics of poorly water-soluble

248 drugs in presence of ultrasound and hydroxypropyl methyl cellulose during

249 antisolvent precipitation Int J Pharm 387, 172–179.

250 Dhumal, R.S., Biradar, S.V., Yamamura, S., Paradkar, A.R., York, P., 2008 Preparation

251

of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for

252 enhancement of bioavailability Eur J Pharm Biopharm 70, 109–115.

253 Hielscher, T., 2005 Ultrasonic Production of Nano-Size Dispersions and Emulsions,

254 Dans European Nano Systems Worshop ENS, Paris (France).

255

Hu, J., Johnston, K.P., Williams III, R.O., 2003 Spray freezing into liquid (SFL) particle

256 engineering technology to enhance dissolution of poorly water soluble drugs:

257 organic solvent versus organic/aqueous co-solvent systems Eur J Pharm Sci.

258

20, 295–303.

259 Kakran, M., Sahoo, N.G., Li, L., Judeh, Z., Wang, Y., Chong, K., Loh, L., 2010 Fabrication

260

of drug nanoparticles by evaporative precipitation of nanosuspension Int J.

261 Pharm 383, 285–292.

262 Kim, H.-Y., Han, J.-A., Kweon, D.-K., Park, J.-D., Lim, S.-T., 2013 Effect of ultrasonic

263 treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch.

264 Carbohydr Polym 93, 582–588.

265 Leroueil-Le Verger, M., Fluckiger, L., Kim, Y.-I., Hoffman, M., Maincent, P., 1998.

266 Preparation and characterization of nanoparticles containing an

antihyperten-267 sive agent Eur J Pharm Biopharm 46, 137–143.

268 Liu, Y., Sun, C., Hao, Y., Jiang, T., Zheng, L., Wang, S., 2010 Mechanism of dissolution

269 enhancement and bioavailability of poorly water soluble celecoxib by preparing

270 stable amorphous nanoparticles J Pharm Pharm Sci 13, 589–606.

271 Liu, D., Xu, H., Tian, B., Yuan, K., Pan, H., Ma, S., Yang, X., Pan, W., 2012 Fabrication of

272 carvedilol nanosuspensions through the anti-solvent

precipitation–ultrasoni-273 cation method for the improvement of dissolution rate and oral bioavailability.

274 AAPS PharmSciTech 13, 295–304.

275 Müller, R.H., Runge, S., Ravelli, V., Mehnert, W., Thünemann, A.F., Souto, E.B., 2006.

276 Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN1) versus drug

277 nanocrystals Int J Pharm 317, 82–89.

278 Miao, X., Sun, C., Jiang, T., Zheng, L., Wang, T., Wang, S., 2011 Investigation of

279 nanosized crystalline form to improve the oral bioavailability of poorly water

280 soluble cilostazol J Pharm Pharm Sci 14, 196–214.

281 Moorthi, C., Kathiresan, K., 2013 Fabrication of highly stable sonication assisted

282 curcumin nanocrystals by nanoprecipitation method Drug Invent Today 5,

283 66–69.

284 Park, J.-B., Lee, G.-H., Kang, J.-W., Jeon, I.-S., Kim, J.-M., Kim, K.-B., Kang, C.-Y., 2013.

285 Improvement of photostability and dissolution profile of isradipine using

286 inclusion complex J Pharm Invest 43, 55–61.

Patel, V.R., Agrawal, Y.K., 2011 Nanosuspension: An approach to enhance solubility

287

of drugs J Adv Pharm Technol Res 2, 81–87.

288 Santos, H.M., Lodeiro, C., Capelo-Martínez, J.-L., 2008 The Power of Ultrasound,Q8

289 Ultrasound in Chemistry Wiley-VCH Verlag GmbH & Co KGaA, pp 1–16.

290 Tran, T.T.-D., Tran, P.H.-L., 2013 Investigation of polyethylene oxide-based

291 prolonged release solid dispersion containing isradipine J Drug Deliv Sci.

292 Technol 23, 269–274.

293 Tran, T.T.-D., Tran, P.H.-L., Lee, B.-J., 2009 Dissolution-modulating mechanism of

294 alkalizers and polymers in a nanoemulsifying solid dispersion containing

295 ionizable and poorly water-soluble drug Eur J Pharm Biopharm 72, 83–90.

296 Tran, T.T.-D., Tran, P.H.-L., Choi, H.-G., Han, H.-K., Lee, B.-J., 2010 The roles of

297 acidifiers in solid dispersions and physical mixtures Int J Pharm 384, 60–66.

298 Vasconcelos, T., Sarmento, B., Costa, P., 2007 Solid dispersions as strategy to

299 improve oral bioavailability of poor water soluble drugs Drug Discov Today 12,

300 1068–1075.

301 Zheng, Z., Zhang, X., Carbo, D., Clark, C., Nathan, C., Lvov, Y., 2010 Sonication-assisted

302 synthesis of polyelectrolyte-coated curcumin nanoparticles Langmuir 26,

303 7679–7681.

2-Theta

Pure IS

HPMC 6

F6

Fig 7 PXRD patterns of pure IS, HPMC 6 and freeze-dried sample of F6 formulation.

Wavelength (cm-1)

1000 2000

3000 4000

pure I S

F6

HPMC 6

Fig 8 FTIR spectra of pure IS, HPMC 6 and freeze-dried sample of F6 formulation.

Ngày đăng: 16/12/2017, 06:19

🧩 Sản phẩm bạn có thể quan tâm