phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử phân tích mạch trong Miền S của mạch điện tử
Trang 1S-Domain Analysis
Trang 2s-Domain Circuit Analysis
Time domain
(t domain)
Complex frequency domain (s domain)
Algebraictechniques
Responsetransform
Trang 3Kirchhoff’s Laws in s-Domain
Kirchhoff’s current law (KCL)
Kirchhoff’s voltage law (KVL)
) (
1 t i
) (
4 t i
) (
2 t i
) (
3 t i
0 )
( )
( )
( )
1 t + i t − i t + i t =
i I1( s ) + I2( s ) − I3( s ) + I4( s ) = 0
0 )
( )
( )
− v t v t v t − V1( s ) + V2( s ) + V3( s ) = 0
− +v2(t) +v4(t) −
−
+
) (
1 t v
−
+
) (
3 t v
−
+
) (
5 t v
Trang 4Signal Sources in s Domain
Voltage Source:
_
+ )
depends )
(
) ( )
(
= =
s I
s V s
+
_ )
depends
)
(
) ( )
depends )
(
) ( )
(
=
=
s V
s V s
Trang 5Time and s-Domain Element Models
Impedance and Voltage Source for Initial Conditions
t
v L( ) = L( )
Inductor:
_ +
_
+ )
(s
V L
Ls
) 0 (
) ( )
(
L
L L
Li
s LsI s
Inductor:
_
+ )
) (
1 )
(
0
C
t C C
v
d
i C
s
I Cs
s V
C
C C
0
) (
1 )
Capacitor:
Trang 6Impedance and Voltage Source for Initial
Conditions
R s
I
s V s
) ( )
(
0 ) 0 (
th
wi )
(
) ( )
s V s
Z
0 0
th wi
1 )
(
) ( )
Cs s
I
s V s
C
C C
• Impedance Z(s)
with all initial conditions set to zero
ansform current tr
transform voltage
) (s =
Z
• Impedance of the three passive elements
Trang 7Time and s-Domain Element Models
Admittance and Current Source for Initial Conditions
1 )
R
s
I R = RResistor:
_
+ )
) (
i
d
v L
s
V Ls
s I
L
L L
0
) (
1 )
_
+ )
) ( )
(
C
C C
Cv
s CsV s
Capacitor:
_
+ )
Trang 8Admittance and Current Source for Initial
Conditions
R s
V
s I s
Y
R
R R
1 )
(
) ( )
0 ) 0 (
th wi
1 )
(
) ( )
V
s I s
Y
0 0
th
wi )
(
) ( )
s V
s I s
C
C C
• Admittance Y(s)
with all initial conditions set to zero
) (
1 transform
voltage
ansform current tr
)
(
s Z
s
• Admittance of the three passive elements
Trang 9Example: Solve for Current Waveform i(t)
(s
V L
) 0 (
L
Li
− +V R (s)
0 )
( )
A
By KVL:
) ( )
Resistor: Inductor: V L(s) = LsI(s) − Li L( 0 )
0 )
0 ( )
( )
+
s V
L R s
i L
R s
R V
s
R V
L R s
i L
R s
s
L
V s
I
L A
A
L A
+
+ +
−
=
+
+ +
=
) 0 (
) 0 ( )
(
) (
) ( )
0 ( )
R
V R
V t
R L
t L
R A
Trang 10Series Equivalence and Voltage Division
) ( ) ( )
( ) ( )
1 s Z s I s Z s I s
) ( )) ( )
( (
) ( )
( )
(
2 1
2 1
s I s Z s
Z
s V s
V s
)
( )
(
)
( ) (
)
( )
(
2 2
1 1
s
V s Z
s
Z s
V
s
V s Z
s
Z s
( ) ( )
2 s Z s I s Z s I s
) ( )
( )
−
+
) (
)
(s I
) (
1 s I
) (
2 s I
)
(s I
2
1 Z Z
Trang 11Parallel Equivalence and Current Division
) ( ) ( )
1 s Y s V s
) ( )) ( )
( (
) ( )
( )
(
2 1
2 1
s V s Y s
Y
s I s
I s
)
( )
(
)
( ) (
)
( )
(
2 2
1 1
s
I s Y
s
Y s
I
s
I s Y
s
Y s
2 s Y s V s
) ( )
( )
)
(s I
2
1 Y Y
)
(s I
) (
2 s I
) (
1 s I
Trang 122 s V
2 s V
(
2 1
=
RCs
R Ls
RLCs
RCs
R Ls
s Z
Ls s
R
RCs Cs
R s
Z
s Y
EQ EQ
1 1
) (
1 )
(
1 1
+
= +
2 t v
2 s V
2 s V
A
B
) (
) (
)
( )
(
1 2
1
1 2
s
V R Ls
RCLs
R
s
V Z
s
Z s
V
EQ EQ
+ +
2 s V
A
Trang 13General Techniques for s-Domain Circuit
Analysis
• Node Voltage Analysis (in s-domain)
– Use Kirchhoff’s Current Law (KCL)– Get equations of node voltages
– Use current sources for initial conditions– Voltage source current source
• Mesh Current Analysis (in s-domain)
– Use Kirchhoff’s Voltage Law (KVL)– Get equations of currents in the mesh– Use voltage sources for initial conditions– Current source voltage source
(Works only for “Planar” circuits)
Trang 14Formulating Node-Voltage Equations
Step 0: Transform the circuit into the s domain using current sources to represent capacitor and inductor initial conditions
Step 1: Select a reference node Identify a node voltage at each
of the non-reference nodes and a current with every element
in the circuit
Step 2: Write KCL connection constraints in terms of the
element currents at the non-reference nodes
Step 3: Use the element admittances and the fundamental
property of node voltages to express the element currents in terms of the node voltages
Step 4: Substitute the device constraints from Step 3 into the KCL connection constraints from Step 2 and arrange the
resulting equations in a standard form
Trang 15Example: Formulating Node-Voltage Equations
inductor initial conditions
Step 1: Identify N-1=2 node voltages and a current with each element
Step 2: Apply KCL at nodes A and B:
0 ) ( )
( )
0 ( )
0 (
: B Node
0 ) ( )
( )
0 ( )
( : A Node
3 1
2 1
S
=
− +
I s
i Cv
s I s
I s
i s I
L C
( ) ( )
(
1 where
) ( )
( ) ( )
(
) ( )
(
1 )
( )
( ) ( )
(
3 2 1
s CsV s
V s Y s
I
R G
s GV s
V s Y s
I
s V s
V Ls
s V s
V s Y s
I
B B
C
A A
R
B A
B A
Trang 16Formulating Node-Voltage Equations (Cont’d)
Step 2: Apply KCL at nodes A and B:
0 ) ( )
( )
0 ( )
0 (
: B Node
0 ) ( )
( )
0 ( )
( : A Node
3 1
2 1
S
=
− +
I s
i Cv
s I s
I s
i s I
L C
L
Step 3: Express element equations in terms of node voltages
) ( )
( ) ( )
(
1 where
) ( )
( ) ( )
(
) ( )
(
1 )
( )
( ) ( )
(
3 2 1
s CsV s
V s Y s
I
R G
s GV s
V s Y s
I
s V s
V Ls
s V s
V s Y s
I
B B
C
A A
R
B A
B A
Step 4: Substitute eqns in Step 3 into eqns in Step 2 and collect
common terms to yield node-voltage eqns.
s
i Cv
s V
Cs Ls
s
V Ls
s
i s I s
V Ls
s
V Ls G
L C
B A
L S
B A
) 0 ( )
0 ( )
(
1 )
(
1
: B Node
) 0 ( )
( )
(
1 )
(
1
: A Node
Trang 17Solving s-Domain Circuit Equations
• Circuit Determinant:
Ls
G Cs GLCs
Ls Ls
Cs Ls
G
Ls Cs
Ls
Ls Ls
G s
+ +
=
− +
1 (
1 1
1
1 )
(
Depends on circuit element parameters: L, C, G=1/R,
not on driving force and initial conditions
• Solve for node A using Cramer’s rule:
G Cs GLCs
Cv LCsi
G Cs GLCs
s I LCs
s
Ls Cs
Cv s
i
Ls s
i s I
s
s s
V
C L
S
C L
L S
A A
+ +
+
− + +
− +
2
) 0 ( )
0 ( )
( ) 1 (
) (
1 )
0 ( )
0 (
1 )
0 ( )
(
) (
) ( )
(
Zero State when initial condition sources are turned off
Zero input when input sources are turned off
Trang 18Solving s-Domain Circuit Eqns (Cont’d)
• Solve for node B using Cramer’s rule:
G Cs GLCs
Cv GLs
GLi G
Cs GLCs
s I
s
Cv s
i Ls
s i
s I Ls
G
s
s s
V
C L
S
C L
L S
B B
+ +
+ +
+ +
) 0 ( )
1 (
) 0 ( )
(
) (
) 0 ( )
0 ( 1
) 0 ( )
( 1
) (
) ( )
(
Zero State Zero input
Trang 19Network Functions
• Driving-point function relates the voltage and
current at a given pair of terminals called a port
Transform Signal
Input
Transform Response
state -
Zero function
) (
1 )
(
) ( )
(
s Y s
I
s V s
• Transfer function relates an input and response at
different ports in the circuit
) (
) ( Function
Transfer Voltage
) (
1
2
s V
s V s
Circuit
in the zero-state
) ( Function
Transfer Current
) (
1
2
s I
s I s
) (
) ( Admittance
Transfer )
(
1
2
s V
s I s
) (
) ( Impedance
Transfer )
(
1
2
s I
s V s
Trang 20Calculating Network Functions
2 s V
2 s I
) ( )
( )
) ( )
(
) ( )
(
) ( )
(
2 1
2 1
2
s Z s
Z
s Z s
V
s V s
(
) ( )
2 1
2
s Z s
Z
s Z s
( )
) ( )
(
) ( )
(
) ( )
(
2 1
2 1
2
s Y s
Y
s Y s
I
s I s
(
) ( )
2 1
2
s Y s
Y
s Y s
Trang 21Impulse Response and Step Response
T(s) Circuit
(s T s X s
• Input-output relationship in s-domain
)(1
)()
• When input signal is an impulse
– Impulse response equals network function
– H(s) = impulse response transform
– h(t) = impulse response waveform
s
s H s
s
T s
G( ) = ( ) = ( )
• When input signal is a step
– G(s) = step response transform
– g(t) = step response waveform
)()
(t u t
)()
(=) means equal almost everywhere,
excludes those points at which g(t)
has a discontinuity
dt
t
dg t
h d
h s
g( ) t ( ) , ( )( ) ( )
= ∫ τ τ